Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T05:50:45.307Z Has data issue: false hasContentIssue false

Drag force on spherical particle moving near a plane wall in highly rarefied gas

Published online by Cambridge University Press:  28 November 2019

P. Goswami
Affiliation:
Institute for Nano- and Microfluidics, Technische Universität Darmstadt, 64287Darmstadt, Germany
T. Baier
Affiliation:
Institute for Nano- and Microfluidics, Technische Universität Darmstadt, 64287Darmstadt, Germany
S. Tiwari
Affiliation:
Department of Mathematics, Technische Universität Kaiserslautern, 67663Kaiserslautern, Germany
C. Lv
Affiliation:
Institute for Nano- and Microfluidics, Technische Universität Darmstadt, 64287Darmstadt, Germany Department of Engineering Mechanics, Tsinghua University, 100084Beijing, China
S. Hardt*
Affiliation:
Institute for Nano- and Microfluidics, Technische Universität Darmstadt, 64287Darmstadt, Germany
A. Klar
Affiliation:
Department of Mathematics, Technische Universität Kaiserslautern, 67663Kaiserslautern, Germany
*
Email address for correspondence: hardt@nmf.tu-darmstadt.de

Abstract

The drag force on a sphere in tangential and normal motion to a plane wall is evaluated in the limit of large Knudsen number and small Mach (and Strouhal) number assuming isothermal conditions and diffuse reflection of gas molecules on walls. In the limit of free molecular flow, the molecular distribution function of the gas is evaluated using a set of coupled Fredholm integral equations. The results are compared with direct simulation Monte Carlo calculations and extended for finite Knudsen numbers. In all cases stronger dependence of the force on the width of the gap is found for normal compared to tangential motion. When the flow within the gap can be considered as essentially collisionless in nature, a similar dependence of the force on the gap width is observed at finite Knudsen numbers as in the free molecular case.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babovsky, H. & Illner, R. 1989 A convergence proof for Nanbu’s simulation method for the full Boltzmann equation. SIAM J. Numer. Anal. 26 (1), 4565.CrossRefGoogle Scholar
Bird, G. A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press.Google Scholar
Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng Sci. 16 (3–4), 242251.CrossRefGoogle Scholar
Cercignani, C. & Daneri, A. 1963 Flow of a rarefied gas between two parallel plates. J. Appl. Phys. 34 (12), 35093513.CrossRefGoogle Scholar
Cercignani, C., Illner, R. & Pulvirenti, M. 2013 The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, vol. 106. Springer.Google Scholar
Cox, R. G. & Hsu, S. K. 1977 The lateral migration of solid particles in a laminar flow near a plane. Intl J. Multiphase Flow 3 (3), 201222.CrossRefGoogle Scholar
Epstein, P. S. 1924 On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23 (6), 710733.CrossRefGoogle Scholar
Faxen, H. 1923 Die Bewegung einer starren Kugel längs der Achse eines mit zäher Flüssigkeit gefüllten Rohres. Ark. Mat. Astron. Fys. 17, 128.Google Scholar
Goldman, A. J., Cox, R. G. & Brenner, H. 1967 Slow viscous motion of a sphere parallel to a plane wall – I Motion through a quiescent fluid. Chem. Engng Sci. 22 (4), 637651.CrossRefGoogle Scholar
Gopinath, A. & Koch, D. L. 1997 A method for calculating hydrodynamic interactions between two bodies in low Mach number free-molecular flows with application to the resistivity functions for two aligned cylinders. Phys. Fluids 9 (11), 35503565.CrossRefGoogle Scholar
Gopinath, A. & Koch, D. L. 1999 Hydrodynamic interactions between two equal spheres in a highly rarefied gas. Phys. Fluids 11 (9), 27722787.CrossRefGoogle Scholar
Goren, S. L. 1973 The hydrodynamic force resisting the approach of a sphere to a plane wall in slip flow. J. Colloid Interface Sci. 44 (2), 356360.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics. Martinus Nijhoff.Google Scholar
Hocking, L. M. 1973 The effect of slip on the motion of a sphere close to a wall and of two adjacent spheres. J. Engng Maths 7 (3), 207221.CrossRefGoogle Scholar
Lorentz, H. A. 1907 Ein allgemeiner Satz, die Bewegung einer reibenden Flüssigkeit betreffend, nebst einigen Anwendungen desselben. In Abhandlungen über theoretische Physik Erster Band (ed. Lorentz, H. A.), pp. 2342. B. G. Teubner.Google Scholar
Loussaief, H., Pasol, L. & Feuillebois, F. 2015 Motion of a spherical particle in a viscous fluid along a slip wall. Q. J. Mech. Appl. Maths 68 (2), 115144.CrossRefGoogle Scholar
Luo, H. & Pozrikidis, C. 2008 Effect of surface slip on Stokes flow past a spherical particle in infinite fluid and near a plane wall. J. Engng Maths 62 (1), 121.CrossRefGoogle Scholar
Maude, A. D. 1961 End effects in a falling-sphere viscometer. Brit. J. Appl. Phys. 12 (6), 293295.CrossRefGoogle Scholar
Nanbu, K. 1980 Direct simulation scheme derived from the Boltzmann equation. I. Monocomponent gases. J. Phys. Soc. Japan 49 (5), 20422049.CrossRefGoogle Scholar
Neunzert, H. & Struckmeier, J. 1995 Particle methods for the Boltzmann equation. Acta Numer. 4, 417457.CrossRefGoogle Scholar
O’Neill, M. E. 1964 A slow motion of viscous liquid caused by a slowly moving solid sphere. Mathematika 11 (1), 6774.CrossRefGoogle Scholar
O’Neill, M. E. & Stewartson, K. 1967 On the slow motion of a sphere parallel to a nearby plane wall. J. Fluid Mech. 27 (4), 705724.CrossRefGoogle Scholar
Ramanathan, S., Koch, D. L. & Bhiladvala, R. B. 2010 Noncontinuum drag force on a nanowire vibrating normal to a wall: simulations and theory. Phys. Fluids 22 (10), 103101.CrossRefGoogle Scholar
Shrestha, S., Tiwari, S., Klar, A. & Hardt, S. 2015 Numerical simulation of a moving rigid body in a rarefied gas. J. Comput. Phys. 292, 239252.CrossRefGoogle Scholar
Sone, Y. 2007 Molecular Gas Dynamics: Theory, Techniques, and Applications. Birkhäuser.CrossRefGoogle Scholar
Sone, Y. & Onishi, Y. 1978 Kinetic theory of evaporation and condensation – hydrodynamic equation and slip boundary condition. J. Phys. Soc. Japan 44 (6), 19811994.CrossRefGoogle Scholar
Sundararajakumar, R. R. & Koch, D. L. 1996 Non-continuum lubrication flows between particles colliding in a gas. J. Fluid Mech. 313, 283308.CrossRefGoogle Scholar
Takata, S., Sone, Y. & Aoki, K. 1993 Numerical analysis of a uniform flow of a rarefied gas past a sphere on the basis of the Boltzmann equation for hard-sphere molecules. Phys. Fluids A 5 (3), 716737.CrossRefGoogle Scholar
Vasseur, P. & Cox, R. G. 1977 The lateral migration of spherical particles sedimenting in a stagnant bounded fluid. J. Fluid Mech. 80 (3), 561591.CrossRefGoogle Scholar
Vinogradova, O. I. 1995 Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 11 (6), 22132220.CrossRefGoogle Scholar
Wang, C.-T. 1972 Free molecular flow over a rotating sphere. AIAA J. 10 (5), 713714.CrossRefGoogle Scholar
Ying, R. & Peters, M. H. 1989 Hydrodynamic interaction of two unequal-sized spheres in a slightly rarefied gas: resistance and mobility functions. J. Fluid Mech. 207, 353378.CrossRefGoogle Scholar
Ying, R. & Peters, M. H. 1991 Interparticle and particle surface gas dynamic interactions. Aerosol Sci. Technol. 14 (4), 418433.CrossRefGoogle Scholar
Zeng, L., Balachandar, S. & Fischer, P. 2005 Wall-induced forces on a rigid sphere at finite Reynolds number. J. Fluid Mech. 536, 125.CrossRefGoogle Scholar