Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T23:34:42.195Z Has data issue: false hasContentIssue false

Drag force on a liquid domain moving inside a membrane sheet surrounded by aqueous medium

Published online by Cambridge University Press:  18 August 2015

V. Laxminarsimha Rao
Affiliation:
Mechanics and Applied Mathematics Group, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
Sovan Lal Das*
Affiliation:
Mechanics and Applied Mathematics Group, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
*
Email address for correspondence: sovandas@iitk.ac.in

Abstract

We compute the drag on a circular and liquid microdomain diffusing in a two-dimensional fluid lipid bilayer membrane surrounded by a fluid above and below. Under the assumptions that the liquids are incompressible and the flow is of low Reynolds number, Stokes’ equations describe the flow in the two-dimensional membrane as well as in the surrounding three-dimensional fluid. The expression for the drag force on the liquid domain involves Fredholm integral equations of the second kind, which we numerically solve using discrete collocation method based on Chebyshev polynomials. We observe that when the domain is more viscous than the surrounding membrane (including the rigid domain case), the drag force is almost independent of the viscosity contrast between the domain and the surrounding membrane, as also observed earlier in experiments by other researchers. The mobility also varies logarithmically with Boussinesq number ${\it\beta}$ for large ${\it\beta}$. On the other hand, for a less viscous domain the dimensionless drag force reduces with increasing viscosity contrast, and a significant change in the drag force, from that when there is no viscosity contrast or when the domain is rigid, has been observed. Further, the logarithmic behaviour of the mobility no longer holds for less viscous domains. Our method of computing the drag force and diffusion coefficient is valid for arbitrary viscosity contrast between the domain and membrane and any domain size (subject to ${\it\beta}\geqslant 5$).

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aliaskarisohi, S., Tierno, P., Dhar, P., Khattari, Z., Blaszczynski, M. & Fischer, T. M. 2010 On the diffusion of circular domains on a spherical vesicle. J. Fluid Mech. 654, 417451.Google Scholar
Atkinson, K. E. 1997 The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press.Google Scholar
Brooks, C. F., Fuller, G. G., Frank, C. W. & Robertson, C. R. 1999 An interfacial stress rheometer to study rheological transitions in monolayers at the air–water interface. Langmuir 15 (7), 24502459.Google Scholar
Brown, D. A. & London, E. 1998 Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14 (1), 111136.Google Scholar
Cicuta, P., Keller, S. L. & Veatch, S. L. 2007 Diffusion of liquid domains in lipid bilayer membranes. J. Phys. Chem. B 111 (13), 33283331.Google Scholar
Dietrich, C., Bagatolli, L. A., Volovyk, Z. N., Thompson, N. L., Levi, M., Jacobson, K. & Gratton, E. 2001 Lipid rafts reconstituted in model membranes. Biophys. J. 80 (3), 14171428.Google Scholar
Engelman, D. M. 2005 Membranes are more mosaic than fluid. Nature 438 (7068), 578580.Google Scholar
Evans, E. & Sackmann, E. 1988 Translational and rotational drag coefficients for a disk moving in a liquid membrane associated with a rigid substrate. J. Fluid Mech. 194, 553561.Google Scholar
Fujitani, Y. 2011 Drag coefficient of a liquid domain in a fluid membrane. J. Phys. Soc. Japan 80 (7), 074609.Google Scholar
Fujitani, Y. 2012 Drag coefficient of a liquid domain in a fluid membrane almost as viscous as the domain. J. Phys. Soc. Japan 81 (8), 084601.Google Scholar
Fujitani, Y. 2013 Drag coefficient of a liquid domain in a fluid membrane surrounded by confined three-dimensional fluids. J. Phys. Soc. Japan 82 (8), 084403.Google Scholar
Gambin, Y., Lopez-Esparza, R., Reffay, M., Sierecki, E., Gov, N. S., Genest, M., Hodges, R. S. & Urbach, W. 2006 Lateral mobility of proteins in liquid membranes revisited. Proc. Natl Acad. Sci. USA 103 (7), 20982102.Google Scholar
Guigas, G. & Weiss, M. 2006 Size-dependent diffusion of membrane inclusions. Biophys. J. 91 (7), 23932398.Google Scholar
Hughes, B. D., Pailthorpe, B. A. & White, L. R. 1981 The translational and rotational drag on a cylinder moving in a membrane. J. Fluid Mech. 110, 349372.Google Scholar
Hughes, B. D., Pailthorpe, B. A., White, L. R. & Sawyer, W. H. 1982 Extraction of membrane microviscosity from translational and rotational diffusion coefficients. Biophys. J. 37 (3), 673676.Google Scholar
Ikonen, E. 2001 Roles of lipid rafts in membrane transport. Curr. Opin. Cell Biol. 13 (4), 470477.CrossRefGoogle ScholarPubMed
Klingler, J. F. & McConnell, H. M. 1993 Brownian motion and fluid mechanics of lipid monolayer domains. J. Phys. Chem. 97 (22), 60966100.Google Scholar
Lee, C. C. & Petersen, N. O. 2003 The lateral diffusion of selectively aggregated peptides in giant unilamellar vesicles. Biophys. J. 84 (3), 17561764.Google Scholar
Mason, J. C. & Handscomb, D. C. 2010 Chebyshev Polynomials. CRC Press.Google Scholar
Naji, A., Levine, A. J. & Pincus, P. A. 2007 Corrections to the Saffman–Delbrück mobility for membrane bound proteins. Biophys. J. 93 (11), L49L51.Google Scholar
Peters, R. & Cherry, R. J. 1982 Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman–Delbrück equations. Proc. Natl Acad. Sci. USA 79 (14), 43174321.Google Scholar
Petrov, E. P. & Schwille, P. 2008 Translational diffusion in lipid membranes beyond the Saffman–Delbrück approximation. Biophys. J. 94 (5), L41L43.Google Scholar
Ramachandran, S., Komura, S., Imai, M. & Seki, K. 2010 Drag coefficient of a liquid domain in a two-dimensional membrane. Eur. Phys. J. E 31 (3), 303310.Google Scholar
Saffman, P. G. 1976 Brownian motion in thin sheets of viscous fluid. J. Fluid Mech. 73 (04), 593602.Google Scholar
Saffman, P. G. & Delbrück, M. 1975 Brownian motion in biological membranes. Proc. Natl Acad. Sci. USA 72 (8), 31113113.Google Scholar
Seki, K., Mogre, S. & Komura, S. 2014 Diffusion coefficients in leaflets of bilayer membranes. Phys. Rev. E 89 (2), 022713.Google Scholar
Seki, K., Ramachandran, S. & Komura, S. 2011 Diffusion coefficient of an inclusion in a liquid membrane supported by a solvent of arbitrary thickness. Phys. Rev. E 84 (2), 021905.Google Scholar
Simons, K. & Ikonen, E. 1997 Functional rafts in cell membranes. Nature 387 (6633), 569572.Google Scholar
Singer, S. J. & Nicolson, G. L. 1972 The fluid mosaic model of the structure of cell membranes. Science 175 (23), 720731.CrossRefGoogle ScholarPubMed
Stanich, C. A., Honerkamp-Smith, A. R., Putzel, G. G., Warth, C. S., Lamprecht, A. K., Mandal, P., Mann, E., Hua, T.-A. D. & Keller, S. L. 2013 Coarsening dynamics of domains in lipid membranes. Biophys. J. 105 (2), 444454.Google Scholar
Stone, H. A. & Ajdari, A. 1998 Hydrodynamics of particles embedded in a flat surfactant layer overlying a subphase of finite depth. J. Fluid Mech. 369, 151173.Google Scholar
Veatch, S. L. & Keller, S. L. 2005 Seeing spots: complex phase behavior in simple membranes. Biochim. Biophys. Acta 1746 (3), 172185.CrossRefGoogle ScholarPubMed
Zemyan, S. M. 2012 Singular Integral Equations. Springer.Google Scholar