Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T22:24:06.588Z Has data issue: false hasContentIssue false

Dispersion induced by non-Newtonian gravity flow in a layered fracture or formation

Published online by Cambridge University Press:  21 September 2020

L. Chiapponi
Affiliation:
Department of Engineering and Architecture, Università degli Studi di Parma, Parco Area delle Scienze 181/A, 43124Parma, Italy
D. Petrolo
Affiliation:
Department of Engineering and Architecture, Università degli Studi di Parma, Parco Area delle Scienze 181/A, 43124Parma, Italy
A. Lenci
Affiliation:
Department of Civil, Chemical, Environmental, and Materials Engineering, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 2, 40136Bologna, Italy
V. Di Federico
Affiliation:
Department of Civil, Chemical, Environmental, and Materials Engineering, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 2, 40136Bologna, Italy
S. Longo*
Affiliation:
Department of Engineering and Architecture, Università degli Studi di Parma, Parco Area delle Scienze 181/A, 43124Parma, Italy
*
Email address for correspondence: sandro.longo@unipr.it

Abstract

Models are developed to grasp the combined effect of rheology and spatial layering on buoyancy-driven dispersion in geologic media. We consider a power-law (PL) or Herschel–Bulkley (HB) constitutive equation for the fluid, and an array of $N$ independent layers in a vertical fracture or porous medium subject to the same upstream overpressure. Under these assumptions, analytical solutions are derived in self-similar form (PL) or based on an expansion (HB) for the nose of single-phase gravity currents advancing into the layers ahead of a pressurized body. The position and size of the body and nose and the shape of the latter are significantly influenced by the interplay of model parameters: flow behaviour index $n$, dimensionless yield stress $\kappa$ for HB fluids, number of layers $N$ and upstream overpressure. It is seen that layering produces (i) a relatively modest increase of the total flow rate with respect to the single layer of equal thickness, and (ii) macro-dispersion at the system scale in addition to local dispersion. The second longitudinal spatial moment of the solute cloud scales with time as $t^{2n/(n+1)}$ for power-law fluids. The macro-dispersion induced by the layering prevails upon local dispersion beyond a threshold time. Theoretical results for the fracture are validated against a set of experiments conducted within a Hele-Shaw cell consisting of six layers. Comparison with experimental results shows that the proposed model is able to capture the propagation of the current and the macro-dispersion due to the velocity difference between layers, typically over-predicting the former and under-predicting the latter.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balhoff, M. T. & Thompson, K. E. 2006 A macroscopic model for shear-thinning flow in packed beds based on network modeling. Chem. Engng Sci. 61 (2), 698719.CrossRefGoogle Scholar
Balmforth, N. J., Burbidge, A. S., Craster, R. V., Salzig, J. & Shen, A. 2000 Visco-plastic models of isothermal lava domes. J. Fluid Mech. 403, 3765.CrossRefGoogle Scholar
Barenblatt, G. I., Entov, V. M. & Ryzhik, V. M. 1990 Theory of Fluid Flows through Natural Rocks. Springer.CrossRefGoogle Scholar
Bataller, R. C. 2008 On unsteady gravity flows of a power-law fluid through a porous medium. Appl. Maths Comput. 196, 356362.CrossRefGoogle Scholar
Berkowitz, B. & Zhou, J. 1996 Reactive solute transport in a single fracture. Water Resour. Res. 32 (4), 901913.CrossRefGoogle Scholar
Bird, R. B., Dai, G. C. & Yarusso, B. J. 1983 The rheology and flow of viscoplastic materials. Rev. Chem. Engng 1 (1), 170.CrossRefGoogle Scholar
Bird, R. B., Lightfoot, E. N. & Stewart, W. E. 1960 Notes on Transport Phenomena. Transport Phenomena. By R. B. Bird, W. E. Stewart, E. N. Lightfoot. A Rewritten and Enlarged Edition of “Notes on Transport Phenomena”. John Wiley & Sons.Google Scholar
Blake, S. 1990 Viscoplastic models of lava domes. In Lava Flows and Domes (ed. Fink, J. H.), pp. 88126. Springer.CrossRefGoogle Scholar
Bodur, O. F. & Rey, P. F. 2019 The impact of rheological uncertainty on dynamic topography predictions. Solid Earth 10 (6), 21672178.CrossRefGoogle Scholar
Carrasco-Teja, M. & Frigaard, I. A. 2010 Non-Newtonian fluid displacements in horizontal narrow eccentric annuli: effects of slow motion of the inner cylinder. J. Fluid Mech. 653, 137173.CrossRefGoogle Scholar
Carreau, P. J. 1972 Rheological equations from molecular network theories. Trans. Soc. Rheol. 16 (1), 99127.CrossRefGoogle Scholar
Chevalier, T., Chevalier, C., Clain, X., Dupla, J. C., Canou, J., Rodts, S. & Coussot, P. 2013 Darcy's law for yield stress fluid flowing through a porous medium. J. Non-Newtonian Fluid Mech. 195, 5766.CrossRefGoogle Scholar
Chevalier, T., Rodts, S., Chateau, X., Chevalier, C. & Coussot, P. 2014 Breaking of non-Newtonian character in flows through a porous medium. Phys. Rev. E 89, 023002.CrossRefGoogle ScholarPubMed
Ciriello, V., Longo, S., Chiapponi, L. & Di Federico, V. 2016 Porous gravity currents: a survey to determine the joint influence of fluid rheology and variations of medium properties. Adv. Water Resour. 92, 105115.CrossRefGoogle Scholar
Cristopher, R. H. & Middleman, S. 1965 Power-law flow through a packed tube. Ind. Engng Chem. Fundam. 4, 422427.CrossRefGoogle Scholar
Cross, M. M. 1965 Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J. Colloid Sci. 20 (5), 417437.CrossRefGoogle Scholar
Dagan, G., Fiori, A. & Jankovic, I. 2013 Upscaling of flow in heterogeneous porous formations: critical examination and issues of principle. Adv. Water Resour. 51, 6785.CrossRefGoogle Scholar
Degan, G., Akowanou, C. & Awanou, N. C. 2007 Transient natural convection of non-Newtonian fluids about a vertical surface embedded in an anisotropic porous medium. Intl J. Heat Mass Transfer 50 (23–24), 46294639.CrossRefGoogle Scholar
Dejam, M. 2019 Advective-diffusive-reactive solute transport due to non-Newtonian fluid flows in a fracture surrounded by a tight porous medium. Intl J. Heat Mass Transfer 128, 13071321.CrossRefGoogle Scholar
Delgado, J. M. P. Q. 2006 A critical review of dispersion in packed beds. Heat Mass Transfer 42 (4), 279310.CrossRefGoogle Scholar
Di Federico, V., Archetti, R. & Longo, S. 2012 a Similarity solutions for spreading of a two-dimensional non-Newtonian gravity current. J. Non-Newtonian Fluid Mech. 177–178, 4653.CrossRefGoogle Scholar
Di Federico, V., Archetti, R. & Longo, S. 2012 b Spreading of axisymmetric non-Newtonian power-law gravity currents in porous media. J. Non-Newtonian Fluid Mech. 189–190, 3139.CrossRefGoogle Scholar
Di Federico, V., Longo, S., Chiapponi, L., Archetti, R. & Ciriello, V. 2014 Radial gravity currents in vertically graded porous media: theory and experiments for Newtonian and power-law fluids. Adv. Water Resour. 70, 6576.CrossRefGoogle Scholar
Di Federico, V., Longo, S., King, S. E., Chiapponi, L., Petrolo, D. & Ciriello, V. 2017 Gravity-driven flow of Herschel–Bulkley fluid in a fracture and in a 2D porous medium. J. Fluid Mech. 821, 5984.CrossRefGoogle Scholar
Di Federico, V., Pinelli, M. & Ugarelli, R. 2010 Estimates of effective permeability for non-Newtonian fluid flow in randomly heterogeneous porous media. Stochastic Environ. Res. Risk Assess. 24 (7), 10671076.CrossRefGoogle Scholar
Eslami, A., Frigaard, I. A. & Taghavi, S. M. 2017 Viscoplastic fluid displacement flows in horizontal channels: numerical simulations. J. Non-Newtonian Fluid Mech. 249, 7996.CrossRefGoogle Scholar
Farcas, A. & Woods, A. W. 2015 Buoyancy-driven dispersion in a layered porous rock. J. Fluid Mech. 767, 226239.CrossRefGoogle Scholar
Fenie, H. & Frigaard, I. A. 1999 Transient fluid motions in a simplified model for oilfield plug cementing. Math. Comput. Model. 30 (7–8), 7191.CrossRefGoogle Scholar
Gullu, H. 2015 On the viscous behavior of cement mixtures with clay, sand, lime and bottom ash for jet grouting. Constr. Build. Mater. 93, 891910.CrossRefGoogle Scholar
Herschel, W. H. & Bulkley, R. 1926 Konsistenzmessungen von Gummi-Benzollösungen. Kolloid Z. 39 (4), 291300.CrossRefGoogle Scholar
Hesse, M. A. & Woods, A. W. 2010 Buoyant dispersal of CO2 during geological storage. Geophys. Res. Lett. 37 (1), 15.CrossRefGoogle Scholar
Hewitt, D. R. & Balmforth, N. J. 2013 Thixotropic gravity currents. J. Fluid Mech. 727, 5682.CrossRefGoogle Scholar
Hornung, U., ed. 1997 Homogenization and Porous Media. Interdisciplinary Applied Mathematics, vol. 6. Springer.CrossRefGoogle Scholar
Kananizadeh, N., Chokejaroenrat, C., Li, Y. & Comfort, S. 2015 Modeling improved ISCO treatment of low permeable zones via viscosity modification: assessment of system variables. J. Contam. Hydrol. 173, 2537.CrossRefGoogle ScholarPubMed
Kim, G. B. & Hyun, J. M. 2004 Buoyant convection of a power-law fluid in an enclosure filled with heat-generating porous media. Numer. Heat Transfer 45 (6), 569582.CrossRefGoogle Scholar
Kreipl, M. P. & Kreipl, A. T. 2017 Hydraulic fracturing fluids and their environmental impact: then, today, and tomorrow. Environ. Earth Sci. 76, 160.CrossRefGoogle Scholar
Lauriola, I., Felisa, G., Petrolo, D., Di Federico, V. & Longo, S. 2018 Porous gravity currents: axisymmetric propagation in horizontally graded medium and a review of similarity solutions. Adv. Water Resour. 115, 136150.CrossRefGoogle Scholar
Lee, K. E., Morad, N., Teng, T. T. & Poh, B. T. 2012 Kinetics and in situ rheological behavior of acrylamide redox polymerization. J. Dispers. Sci. Technol. 33 (3), 387395.CrossRefGoogle Scholar
Lipscomb, G. G. & Denn, M. M. 1984 Flow of Bingham fluids in complex geometries. J. Non-Newtonian Fluid Mech. 14, 337346.CrossRefGoogle Scholar
Longo, S., Ciriello, V., Chiapponi, L. & Di Federico, V. 2015 a Combined effect of rheology and confining boundaries on spreading of porous gravity currents. Adv. Water Resour. 79, 140152.CrossRefGoogle Scholar
Longo, S., Di Federico, V. & Chiapponi, L. 2015 b A dipole solution for power-law gravity currents in porous formations. J. Fluid Mech. 778, 534551.CrossRefGoogle Scholar
Longo, S., Di Federico, V., Chiapponi, L. & Archetti, R. 2013 Experimental verification of power-law non-Newtonian axisymmetric porous gravity currents. J. Fluid Mech. 731, R2.CrossRefGoogle Scholar
Matheron, G. & De Marsily, G. 1980 Is transport in porous media always diffusive? A counterexample. Water Resour. Res. 16 (5), 901917.CrossRefGoogle Scholar
Morrell, R. S. & De Waele, A. 1920 Rubber, Resins, Paints and Varnishes. Nostrand.Google Scholar
Orgeas, L., Geindreau, C., Auriault, J.-L. & Bloch, J.-F. 2007 Upscaling the flow of generalised newtonian fluids through anisotropic porous media. J. Non-Newtonian Fluid Mech. 145 (1), 1529.CrossRefGoogle Scholar
Ostwald, W. 1929 Ueber die rechnerische darstellung des strukturgebietes der viskosität. Colloid Polym. Sci. 47 (2), 176187.Google Scholar
Pascal, H. 1983 Nonsteady flow of non-Newtonian fluids through a porous medium. Intl J. Engng Sci. 21, 199210.CrossRefGoogle Scholar
Pascal, J. P. & Pascal, H. 1993 Similarity solutions to some gravity flows of non-Newtonian fluids through a porous medium. Intl J. Non-Linear Mech. 28 (2), 157167.CrossRefGoogle Scholar
Pearson, J. R. A. & Tardy, P. M. J. 2002 Models for flow of non-Newtonian and complex fluids through porous media. J. Non-Newtonian Fluid Mech. 102 (2, SI), 447473.CrossRefGoogle Scholar
Pelipenko, S. & Frigaard, I. A. 2004 Mud removal and cement placement during primary cementing of an oil well – part 2; steady-state displacements. J. Engng Maths 48 (1), 126.CrossRefGoogle Scholar
Phillips, O. M. 2009 Geological Fluid Dynamics: Sub-Surface Flow and Reactions. Cambridge University Press.CrossRefGoogle Scholar
Rayward-Smith, W. J. & Woods, A. W. 2011 Dispersal of buoyancy-driven flow in porous media with inclined baffles. J. Fluid Mech. 689, 517528.CrossRefGoogle Scholar
Salandin, P., Rinaldo, A. & Dagan, G. 1991 A note on transport in stratified formations by flow tilted with respect to the bedding. Water Resour. Res. 27 (11), 30093017.CrossRefGoogle Scholar
Savins, J. G. 1969 Non-Newtonian flow through porous media. Ind. Engng Chem. 61, 1847.CrossRefGoogle Scholar
Sochi, T. 2010 Flow of non-Newtonian fluids in porous media. J. Polym. Sci. B 48 (23), 24372767.CrossRefGoogle Scholar
Sochi, T. & Blunt, M. J. 2008 Pore-scale network modeling of Ellis and Herschel–Bulkley fluids. J. Petrol. Sci. Engng 60 (2), 105124.CrossRefGoogle Scholar
Taghavi, S. M., Seon, T., Martinez, D. M. & Frigaard, I. A. 2009 Buoyancy-dominated displacement flows in near-horizontal channels: the viscous limit. J. Fluid Mech. 639, 135.CrossRefGoogle Scholar
Tran-Viet, A., Routh, A. F. & Woods, A. W. 2014 Control of the permeability of a porous media using a thermally sensitive polymer. AIChE J. 60 (3), 11931201.CrossRefGoogle Scholar
Vajravelu, K., Sreenadh, S. & Reddy, G. V. 2006 Helical flow of a power-law fluid in a thin annulus with permeable walls. Intl J. Non-Linear Mech. 41 (6–7), 761765.CrossRefGoogle Scholar
Velten, K., Lutz, A. & Friedrich, K. 1999 Quantitative characterization of porous materials in polymer processing. Compos. Sci. Technol. 59 (4), 495504.CrossRefGoogle Scholar
Wang, S. & Clarens, A. F. 2012 The effects of $\textrm {CO}_2$-brine rheology on leakage processes in geologic carbon sequestration. Water Resour. Res. 48, W08518.CrossRefGoogle Scholar
Wu, Y.-S. & Pruess, K. 1996 Flow of non-Newtonian fluids in porous media. In Advances in Porous Media, vol. 3, pp. 87184. Elsevier.CrossRefGoogle Scholar
Yang, M.-H. 2001 The rheological behavior of polyacrylamide solution II. Yield stress. Polym. Test. 20 (6), 635642.CrossRefGoogle Scholar
Yasuda, K. Y., Armstrong, R. C. & Cohen, R. E. 1981 Shear flow properties of concentrated solutions of linear and star branched polystyrenes. Rheol. Acta 20 (2), 163178.CrossRefGoogle Scholar
Yilmaz, N., Bakhtiyarov, A. S. & Ibragimov, R. N. 2009 Experimental investigation of newtonian and non-Newtonian fluid flows in porous media. Mech. Res. Commun. 36 (5), 638641.CrossRefGoogle Scholar