Published online by Cambridge University Press: 05 October 2006
We perform direct numerical simulations (DNS) of homogeneous turbulence subject to periodic shear – $S \,{=}\, S_{\hbox{\scriptsize\it max}} \sin (\omega t)$, where $\omega$ is the forcing frequency and $S_{\hbox{\scriptsize\it max}}$ is the maximum shear. The lattice Boltzmann method (LBM) is employed in our simulations and a periodic body force is introduced to produce the required shear. We find that the turbulence behaviour is a strong function of the forcing frequency. There exists a critical frequency – $\omega_{cr}/S_{\hbox{\scriptsize\it max}} \,{\approx}\, 0.5$ – at which the observed behaviour bifurcates. At lower forcing frequencies ($\omega \,{<}\, \omega_{cr}$), turbulence is sustained and the kinetic energy grows. At higher frequencies, the kinetic energy decays. It is shown that the phase difference between the applied strain and the Reynolds stress decreases monotonically from $\pi$ in the constant shear case to $\pi/2$ in very high frequency shear cases. As a result, the net turbulence production per cycle decreases with increasing frequency. In fact, at $\omega/S_{\hbox{\scriptsize\it max}} \,{\geq}\, 10$, decaying isotropic turbulence results are recovered. The frequency-dependence of anisotropy and Reynolds stress budget are also investigated in detail. It is shown that inviscid rapid distortion theory (RDT) does not capture the observed features: it predicts purely oscillatory behaviour at all forcing frequencies. Second moment closure models do predict growth at low frequencies and decay at high frequencies, but the critical frequency value is underestimated. The challenges posed by this flow to turbulence closure modelling are identified.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.