Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T14:57:46.616Z Has data issue: false hasContentIssue false

Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number

Published online by Cambridge University Press:  02 March 2011

L. DUAN
Affiliation:
Department of Aerospace Engineering, University of Maryland, College Park, MD 20742, USA
I. BEEKMAN
Affiliation:
Department of Aerospace Engineering, University of Maryland, College Park, MD 20742, USA
M. P. MARTÍN*
Affiliation:
Department of Aerospace Engineering, University of Maryland, College Park, MD 20742, USA
*
Email address for correspondence: pmartin@umiacs.umd.edu

Abstract

In this paper, we perform direct numerical simulations (DNS) of turbulent boundary layers with nominal free-stream Mach number ranging from 0.3 to 12. The main objective is to assess the scalings with respect to the mean and turbulence behaviours as well as the possible breakdown of the weak compressibility hypothesis for turbulent boundary layers at high Mach numbers (M > 5). We find that many of the scaling relations, such as the van Driest transformation for mean velocity, Walz's relation, Morkovin's scaling and the strong Reynolds analogy, which are derived based on the weak compressibility hypothesis, remain valid for the range of free-stream Mach numbers considered. The explicit dilatation terms such as pressure dilatation and dilatational dissipation remain small for the present Mach number range, and the pressure–strain correlation and the anisotropy of the Reynolds stress tensor are insensitive to the free-stream Mach number. The possible effects of intrinsic compressibility are reflected by the increase in the fluctuations of thermodynamic quantities (prms/pw, ρ′rms/ρ, Trms/T) and turbulence Mach numbers (Mt, Mrms), the existence of shocklets, the modification of turbulence structures (near-wall streaks and large-scale motions) and the variation in the onset of intermittency.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R., Meinhart, C. & Tomkins, C. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Alving, A. E. 1988 Boundary layer relaxation from convex curvature. PhD thesis, Princeton University, Princeton.Google Scholar
Bakewell, H. P. Jr & Lumley, J. L. 1967 Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10 (9), 18801889.CrossRefGoogle Scholar
Baumgartner, M. L. 1997 Turbulence structure in a hypersonic boundary layer. PhD thesis, Princeton University, Princeton.Google Scholar
Brown, G. L. & Thomas, A. S. W. 1977 Large structure in a turbulent boundary layer. Phys. Fluids 20 (10), S243S252.CrossRefGoogle Scholar
Debiève, J. 1983 Etude d'une interaction turbulence/onde de choc. Phd thesis, Université d'Aix–Marseille II. In Proc. ICHMT/IUTAM Symp. on the Structure of Turbulence and Heat and Mass Transfer, Dubrovnik.Google Scholar
Debiève, J., Gouin, H. & Gaviglio, J. 1981 Momentum and temperature fluxes in a shock wave–turbulence interaction. In Proc. ICHMT/IUTAM Symp. on the Structure of Turbulence and Heat and Mass Transfer, Dubrovnik.Google Scholar
van Driest, E. R. 1956 The problem of aerodynamic heating. Aeronaut. Engng Rev. 15 (10), 2641.Google Scholar
Fernholz, H. H. & Finley, P. J. 1980 Critical commentary on mean flow data for two-dimensional compressible turbulent boundary layers. AGARDograph 253.Google Scholar
Fernholz, H. H., Finley, P. J., Dussauge, P. & Smits, A. J. 1989 A survey of measurements and measuring techniques in rapidly distorted compressible turbulent boundary layers. AGARDograph 315.Google Scholar
Ganapathisubramani, B., Clemens, N. & Dolling, D. 2006 Large-scale motions in a supersonic turbulent boundary layers. J. Fluid Mech. 556, 111.CrossRefGoogle Scholar
Gatski, T. B. 1997 New Tools in Turbulence Modelling. Springer.Google Scholar
Guarini, S. E., Moser, R. D., Shariff, K. & Wray, A. 2000 Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. J. Fluid Mech. 414, 133.CrossRefGoogle Scholar
Horstman, C. C. & Owen, F. K. 1972 Turbulent properties of a compressible boundary layer. AIAA J. 10, 14181424.CrossRefGoogle Scholar
Huang, P. G., Coleman, G. N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.CrossRefGoogle Scholar
Klebanoff, P. S. 1955 Characteristics of turbulence in a boundary layer with zero pressure gradient. NACA Tech. Rep. 1247.Google Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstaller, W. P. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.CrossRefGoogle Scholar
Maeder, T., Adams, N. A. & Kleiser, L. 2001 Direct simulation of turbulent supersonic boundary layers by an extended temporal approach. J. Fluid Mech. 429, 187216.CrossRefGoogle Scholar
Martín, M. P. 2004 DNS of hypersonic turbulent boundary layers. AIAA Paper 2004–2337.CrossRefGoogle Scholar
Martín, M. P. 2007 Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments. J. Fluid Mech. 570, 347364.CrossRefGoogle Scholar
McGinley, C. B., Spina, E. F. & Sheplak, M. 1994 Turbulence measurements in a Mach 11 helium turbulent boundary layer. AIAA Paper 94–2364.CrossRefGoogle Scholar
Mikulla, V. & Horstman, C. C. 1976 Turbulence measurements in hypersonic shock-wave boundary-layer interaction flows. AIAA J. 14 (5), 568575.CrossRefGoogle Scholar
Morkovin, M. V. 1962 Effects of compressibility on turbulent flows. In Mécanique de la Turbulence (ed. Favre, A. J.), pp. 367380. CNRS.Google Scholar
O'Farrell, C. & Martín, M. P. 2009 Chasing eddies and their wall signature in DNS data of turbulent boundary layers. J. Turbulence 10 (15), 122.CrossRefGoogle Scholar
Owen, F. K. & Horstman, C. C. 1972 a Turbulent properties of a compressible boundary layer. AIAA J. 10 (1), 14181424.Google Scholar
Owen, F. K. & Horstman, C. C. 1972 b On the structure of hypersonic turbulent boundary layers. J. Fluid Mech. 53, 611636.CrossRefGoogle Scholar
Owen, F. K., Horstman, C. C. & Kussoy, M. I. 1975 Mean and fluctuating flow measurements on a fully-developed non-adiabatic hypersonic boundary layer. J. Fluid Mech. 70, 393413.CrossRefGoogle Scholar
Pirozzoli, S., Grasso, F. & Gatski, T. B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25. Phys. Fluids 16 (3), 530545.CrossRefGoogle Scholar
Ringuette, M. J., Wu, M. & Martín, M. P. 2008 Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 5969.CrossRefGoogle Scholar
Robinson, S. K. 1986 Space–time correlation measurements in a compressible boundary layer. AIAA Paper 86–1130.CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Anuu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Runstadler, P. S., Kline, S. J. & Reynolds, W. C. 1963 An experimental investigation of flow structure of the turbulent boundary layer. Tech. Rep. MD-8. Mechanical Engineering Department, Stanford University.Google Scholar
Sahoo, D., Schultze, M. & Smits, A. J. 2009 Effects of roughness on a turbulent boundary layer in hypersonic flow. AIAA Paper 2009–3678.CrossRefGoogle Scholar
Smits, A. J. & Dussauge, J. P. 2006 Turbulent Shear Layers in Supersonic Flow, 2nd edn. American Institute of Physics.Google Scholar
Smits, A. J., Spina, E. F., Alving, A. E., Smith, R. W., Fernando, E. M. & Donovan, J. F. 1989 A comparison of the turbulence structure of subsonic and supersonic boundary layers. Phys. Fluids 1 (11), 18651875.CrossRefGoogle Scholar
Spina, E. F. & Smits, A. J. 1987 Organized structures in a compressible turbulent boundary layer. J. Fluid Mech. 182, 85109.CrossRefGoogle Scholar
Spina, E. F., Smits, A. J. & Robinson, S. K. 1994 The physics of supersonic turbulent boundary layers. Annu. Rev. Fluid Mech. 26, 287319.CrossRefGoogle Scholar
Vreman, A. W., Sandham, N. D. & Luo, K. H. 1996 Compressible mixing layer growth rate and turbulence characteristics. J. Fluid Mech. 320, 235258.CrossRefGoogle Scholar
Walz, A. 1969 Boundary Layers of Flow and Temperature. MIT Press.Google Scholar
Xu, S. & Martín, M. P. 2004 Assessment of inflow boundary conditions for compressible turbulent boundary layers. Phys. Fluids 16 (7), 26232639.CrossRefGoogle Scholar