Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T08:02:21.111Z Has data issue: false hasContentIssue false

Direct numerical simulation of complete transition to turbulence via oblique breakdown at Mach 3

Published online by Cambridge University Press:  13 January 2011

CHRISTIAN S. J. MAYER*
Affiliation:
Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
DOMINIC A. VON TERZI
Affiliation:
Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
HERMANN F. FASEL
Affiliation:
Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
*
Present address: ExxonMobil Upstream Research Company, Houston, TX 77252, USA. Email address for correspondence: christian.s.mayer@exxonmobil.com

Abstract

A pair of oblique waves at low amplitudes is introduced in a supersonic flat-plate boundary layer at Mach 3. Its downstream development and the concomitant process of laminar to turbulent transition is then investigated numerically using linear-stability theory, parabolized stability equations and direct numerical simulations (DNS). In the present paper, the linear regime is studied first in great detail. The focus of the second part is the early and late nonlinear regimes. It is shown how the disturbance wave spectrum is filled up by nonlinear interactions and which flow structures arise and how these structures locally break down to small scales. Finally, the study answers the question whether a fully developed turbulent boundary layer can be reached by oblique breakdown. It is shown that the skin friction develops such as is typical of transitional and turbulent boundary layers. Initially, the skin friction coefficient increases in the streamwise direction in the transitional region and finally decays when the early turbulent state is reached. Downstream of the maximum in the skin friction, the flow loses its periodicity in time and possesses characteristic mean-flow and spectral properties of a turbulent boundary layer. The DNS data clearly demonstrate that oblique breakdown can lead to a fully developed turbulent boundary layer and therefore it is a relevant mechanism for transition in two-dimensional supersonic boundary layers.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balakumar, P. & Malik, M. R. 1992 Discrete modes and continuous spectra in supersonic boundary layers. J. Fluid Mech. 239, 631656.Google Scholar
Canuto, C., Hussaini, M., Quateroni, A. & Zang, T. 1988 Spectral Methods in Fluid Dynamics. Springer.Google Scholar
Chang, C. L. & Malik, M. R. 1994 Oblique-mode breakdown and secondary instability in supersonic boundary layers. J. Fluid Mech. 273, 323360.CrossRefGoogle Scholar
Coles, D. 1954 Measurements of turbulent friction on a smooth flat plate in supersonic flow. J. Aero. Sci. 21, 433448.Google Scholar
Dussauge, J. P., Smith, R. W., Smits, A. J., Fernholz, H., Finley, P. J. & Spina, E. F. 1996 Turbulent boundary layers in subsonic and supersonic flow. AGARD Rep. AG–335. Advisory Group for Aerospace Research and Development.Google Scholar
Eissler, W. & Bestek, H. 1996 Spatial numerical simulations of linear and weakly nonlinear wave instabilities in supersonic boundary layers. Theor. Comput. Fluid Dyn. 8, 219235.CrossRefGoogle Scholar
Ermolaev, Y. G., Kosinov, A. D. & Semionov, N. V. 1996 Experimental investigation of laminar–turbulent transition process in supersonic boundary layer using controlled disturbances. In Nonlinear Instability and Transition in Three-Dimensional Boundary Layers (ed. Duck, P. W. & Hall, P.), pp. 1726. Kluwer.Google Scholar
Fasel, H., Thumm, A. & Bestek, H. 1993 Direct numerical simulation of transition in supersonic boundary layer: oblique breakdown. In Transitional and Turbulent Compressible Flows (ed. Kral, L. D. & Zang, T. A.), FED 151, pp. 7792. ASME.Google Scholar
Fasel, H. F. & Konzelmann, U. 1990 Non-parallel stability of a flat-plate boundary layer using the complete Navier–Stokes equations. J. Fluid Mech. 221, 311347.Google Scholar
Fedorov, A. V. & Khokhlov, A. P. 2002 Receptivity of hypersonic boundary layer to wall disturbances. Theor. Comput. Fluid Dyn. 15, 231254.Google Scholar
Fernholz, H. H. & Finley, P. J. 1980 A critical commentary on mean flow data for two-dimensional compressible turbulent boundary layers. AGARD Rep. 254. Advisory Group for Aerospace Research and Development.Google Scholar
Fezer, A. & Kloker, M. 1999 Spatial direct numerical simulation of transition phenomena in supersonic flat-plate boundary layers. In Laminar–Turbulent Transition (ed. Fasel, H. F. & Saric, W. S.), pp. 415420. Springer.Google Scholar
Forgoston, E. & Tumin, A. 2005 Initial-value problem for three-dimensional disturbances in a compressible boundary layer. Phys. Fluids 17 (8), 084106.CrossRefGoogle Scholar
Graziosi, P. & Brown, G. L. 2002 Experiments on stability and transition at Mach 3. J. Fluid Mech. 472, 83124.CrossRefGoogle Scholar
Guarini, S. E., Moser, R. D., Shariff, K. & Wray, A. 2000 Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. J. Fluid Mech. 414, 133.CrossRefGoogle Scholar
Harris, P. J. 1997 Numerical investigation of transitional compressible plane wakes. PhD thesis, The University of Arizona.Google Scholar
Hein, S., Bertolotti, F. P., Simen, M., Hanifi, A. & Henningson, D. 1996 Linear nonlocal instability analysis – the linear NOLOT code. Internal Document IB 223-94 A56. DLR, Göttingen, Germany.Google Scholar
Heisenberg, W. 1948 Zur statistischen Theorie der Turbulenz. Z. Physik 124, 628657.Google Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Proceedings of the 1988 Summer Conference, Stanford University.Google Scholar
Husmeier, F., Mayer, C. S. J. & Fasel, H. F. 2005 Investigation of transition of supersonic boundary layers at Mach 3 using DNS. AIAA Paper 2005-0095.Google Scholar
Jiang, L., Choudhari, M., Chang, C.-L. & Liu, C. 2006 Numerical simulations of laminar–turbulent transition in supersonic boundary layer. AIAA Paper 2006-3224.CrossRefGoogle Scholar
Kosinov, A. D., Maslov, A. A. & Semionov, N. V. 1997 An experimental study of generation of unstable disturbances on the leading edge of a plate at M = 2. J. Appl. Mech. Tech. Phys. 38 (1), 4550.Google Scholar
Kosinov, A. D., Semionov, N. V. & Shevelkov, S. G. 1994 a Investigation of supersonic boundary layer stability and transition using controlled disturbances. In Methods of Aerophysical Research (ed. Kharitonov, A. M.), vol. 2, pp. 159166. Institute of Theoretical and Applied Mechanics (ITAM), Novosibirsk, Russia.Google Scholar
Kosinov, A. D., Semionov, N. V., Shevelkov, S. G. & Zinin, O. I. 1994 b Experiments on the nonlinear instability of supersonic boundary layers. In Nonlinear Instability of Nonparallel Flows (ed. Valentine, D. T., Lin, S. P. & Philips, W. R. C.), pp. 196205. Springer.Google Scholar
Laible, A. C., Mayer, C. S. J. & Fasel, H. F. 2009 Numerical investigation of transition for a cone at Mach 3.5: oblique breakdown. AIAA Paper 2009-3557.Google Scholar
Ma, Y. & Zhong, X. 2003 Receptivity of a supersonic boundary layer over a flat plate. Part 1. Wave structures and interactions. J. Fluid Mech. 488, 3778.Google Scholar
Mack, L. M. 1965 Computation of the stability of the laminar boundary layer. In Methods in Computational Physics (ed. Alder, B., Fernbach, S. & Rotenberg, M.), vol. 4, pp. 247299. Academic Press.Google Scholar
Mack, L. M. 1969 Boundary-layer stability theory. Internal document 900-277. Jet Propulsion Laboratory, Pasadena, CA.Google Scholar
Mack, L. M. 1984 Boundary-layer linear stability theory. AGARD Rep. 709. Advisory Group for Aerospace Research and Development.Google Scholar
Mack, L. M. 1987 Stability of axisymmetric boundary layers on sharp cones at hypersonic Mach numbers. AIAA Paper 1987-1413.CrossRefGoogle Scholar
Maeder, T., Adams, N. A. & Kleiser, L. 2001 Direct simulations of turbulent supersonic boundary layers by an extended temporal approach. J. Fluid Mech. 429, 187216.Google Scholar
Maekawa, H., Watanabe, D., Ozaki, K. & Takami, H. 2007 Direct numerical simulation of a spatially evolving supersonic transitional/turbulent boundary layer. In Proceedings of 5th International Symposium on Turbulence and Shear Flow Phenomena TSFP-5 (ed. Friedrich, R., Adams, N. A., Eaton, J. K., Humphrey, J. A. C., Kasagi, N., Leschziner, M. A.), vol. 1, pp. 301306. Elsevier.CrossRefGoogle Scholar
Malik, M. R. 1990 Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86, 376413.Google Scholar
Martin, M. P. 2007 Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments. J. Fluid Mech. 570, 347364.Google Scholar
Mayer, C. S. J. 2004 Stability investigation of a flat plate boundary layer with an adverse pressure gradient at Mach 3. Master's thesis, The University of Arizona.Google Scholar
Mayer, C. S. J. 2009 Numerical investigation of the nonlinear transition regime in supersonic boundary layers. PhD thesis, The University of Arizona.Google Scholar
Mayer, C. S. J. & Fasel, H. F. 2008 Investigation of asymmetric subharmonic resonance in a supersonic boundary layer at Mach 2 using DNS. AIAA Paper 2008-0591.Google Scholar
Mayer, C. S. J., Laible, A. C. & Fasel, H. F. 2009 Numerical investigation of transition initiated by a wave packet on a cone at Mach 3.5. AIAA Paper 2009-3809.Google Scholar
Mayer, C. S. J., Wernz, S. & Fasel, H. F. 2007 Investigation of oblique breakdown in a supersonic boundary layer at Mach 2 using DNS. AIAA Paper 2007-0949.CrossRefGoogle Scholar
Meitz, H. & Fasel, H. F. 2000 A compact-difference scheme for the Navier–Stokes equations in vorticity–velocity formulation. J. Comput. Phys. 157, 371403.Google Scholar
Pirozzoli, S., Grasso, F. & Gatski, T. B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25. Phys. Fluids 16, 530545.Google Scholar
Roy, C. J. & Blottner, F. G. 2006 Review and assessment of turbulence models for hypersonic flows. Prog. Aerosp. Sci. 42, 469530.Google Scholar
Sandham, N. D., Adams, N. A. & Kleiser, L. 1995 Direct simulation of breakdown to turbulence following oblique instability waves in a supersonic boundary layer. Appl. Sci. Res. 54, 223234.Google Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer. J. Fluid Mech. 187, 6198.CrossRefGoogle Scholar
von Terzi, D., Sandberg, R. & Fasel, H. 2009 Identification of large coherent structures in supersonic axisymmetric wakes. Comput. Fluids 38 (8), 16381650.CrossRefGoogle Scholar
von Terzi, D. A. 2004 Numerical investigation of transitional and turbulent backward-facing step flows. PhD thesis, The University of Arizona.Google Scholar
Thumm, A. 1991 Numerische Untersuchungen zum laminar-turbulenten Strömungsumschlag in transsonischen Grenzschichtströmungen. PhD thesis, Universität Stuttgart.Google Scholar
Thumm, A., Wolz, W. & Fasel, H. 1989 Numerical simulation of Tollmien–Schlichting waves in compressible transonic boundary layers on plates. Z. Angew. Math. Mech. 69, 598600.Google Scholar
Tumin, A. 2007 Three-dimensional spatial normal modes in compressible boundary layers. J. Fluid Mech. 586, 295322.Google Scholar
Tumin, A., Wang, X. & Zhong, X. 2007 Direct numerical simulation and the theory of receptivity in a hypersonic boundary layer. Phys. Fluids 19 (1), 014101.Google Scholar
White, F. M. 1991 Viscous Fluid Flow. McGraw-Hill.Google Scholar