Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T19:49:32.594Z Has data issue: false hasContentIssue false

Direct numerical simulation of a wall jet: flow physics

Published online by Cambridge University Press:  08 August 2018

Iftekhar Z. Naqavi*
Affiliation:
Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
James C. Tyacke
Affiliation:
Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
Paul G. Tucker
Affiliation:
Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
*
Email address for correspondence: izn20@eng.cam.ac.uk

Abstract

A direct numerical simulation (DNS) of a plane wall jet is performed at a Reynolds number of $Re_{j}=7500$. The streamwise length of the domain is long enough to achieve self-similarity for the mean flow and the Reynolds shear stress. This is the highest Reynolds number wall jet DNS for a large domain achieved to date. The high resolution simulation reveals the unsteady flow field in great detail and shows the transition process in the outer shear layer and inner boundary layer. Mean flow parameters of maximum velocity decay, wall shear stress, friction coefficient and jet spreading rate are consistent with several other studies reported in the literature. Mean flow, Reynolds normal and shear stress profiles are presented with various scalings, revealing the self-similar behaviour of the wall jet. The Reynolds normal stresses do not show complete similarity for the given Reynolds number and domain length. Previously published inner layer budgets based on LES are inaccurate and those that have been measured are only available in the outer layer. The current DNS provides fully balanced, explicitly calculated budgets for the turbulence kinetic energy, Reynolds normal stresses and Reynolds shear stress in both the inner and outer layers. The budgets are scaled with inner and outer variables. The inner-scaled budgets in the near wall region show great similarity with turbulent boundary layers. The only remarkable difference is for the turbulent diffusion in the wall-normal Reynolds stress and Reynolds shear stress budgets. The outer layer interacts with the inner layer through turbulent diffusion and the excess energy from the wall-normal direction is transferred to the spanwise direction.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamsson, H., Johansson, B. & Löfdahl, L. 1994 A turbulent plane two-dimensional wall-jet in a quiescent surrounding. Eur. J. Mech. (B/Fluids) 13, 533556.Google Scholar
Ahlman, D., Brethouwer, G. & Johansson, A. V. 2007 Direct numerical simulation of a plane turbulent wall-jet including scalar mixing. Phys. Fluids 9, 065102.Google Scholar
Ahlman, D., Velter, G., Brethouwer, G. & Johansson, A. V. 2009 Direct numerical simulation of nonisothermal turbulent wall jets. Phys. Fluids 21, 035101.Google Scholar
Banyassady, R. & Piomelli, U. 2014 Turbulent plane wall jets over smooth and rough surfaces. J. Turbul. 15, 186207.Google Scholar
Banyassady, R. & Piomelli, U. 2015 Interaction of inner and outer layers in plane and radial wall jets. J. Turbul. 16, 460483.Google Scholar
Barenblatt, G. I., Chorin, A. J. & Prostokishin, V. M. 2005 The turbulent wall jet: a triple-layered structure and incomplete similarity. Proc. Natl Acad. Sci. USA 102 (25), 88508853.Google Scholar
Dejoan, A. & Leschziner, M. A. 2005 Large eddy simulation of a plane turbulent wall jet. Phys. Fluids 17, 025102.Google Scholar
Dunham, J. 1968 A theory of circulation control by slot-blowing, applied to a circular cylinder. J. Fluid Mech. 33, 495514.Google Scholar
Eriksson, J. G.2003 Experimental studies of the plane turbulent wall jet. PhD thesis, Royal Institute of Technology, Department of Mechanics, Stockholm, Sweden.Google Scholar
Eriksson, J. G., Karlsson, R. I. & Persson, J. 1998 An experimental study of a two-dimensional plane turbulent wall jet. Exp. Fluids 25, 5060.Google Scholar
George, W. K., Abrahamsson, H., Eriksson, J., Karlsson, R. I., Lofdahal, L. & Wosnik, M. 2000 A similarity theory for a turbulent plane wall jet without external stream. J. Fluid Mech. 425, 367411.Google Scholar
Glauert, M. B. 1956 The wall jet. J. Fluid Mech. 1, 625643.Google Scholar
Irwin, H. P. A. H. 1973 Measurements in a self-preserving plane wall jet in a positive pressure gradient. J. Fluid Mech. 61, 3363.Google Scholar
Karlsson, R., Eriksson, J. & Persson, J.1993 An experimental study of a two-dimensional plane turbulent wall jet. Tech. Rep. VU-S93-B36. Vattenfall Utveckling AB, Älvkarleby Laboratory, Sweden.Google Scholar
Launder, B. E. & Rodi, W. 1981 The turbulent wall jet. Prog. Aerosp. Sci. 19, 81128.Google Scholar
Launder, B. E. & Rodi, W. 1983 The turbulent wall jet – measurements and modeling. Annu. Rev. Fluid Mech. 15, 429459.Google Scholar
Levin, O., Herbst, A. H. & Henningson, D. S. 2006 Early turbulent evolution of the blasius wall jet. J. Turbul. 7, 117.Google Scholar
Lund, T. S., Wu, X. & Squires, K. D. 1998 Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140, 233258.Google Scholar
Mansour, N. N., Kim, J. & Moin, P. 1988 Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 1544.Google Scholar
Moin, P. & Kim, J. 1982 Numerical investigation of turbulent channel flow. J. Fluid Mech. 118, 341377.Google Scholar
Moin, P. & Mahesh, K. 1998 Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30, 539578.Google Scholar
Moser, R. D. & Moin, P. 1987 The effects of curvature in wall-bounded turbulent flows. J. Fluid Mech. 175, 479510.Google Scholar
Myers, G. E., Schauer, J. J. & Eustis, R. H. 1963 Plane turbulent wall jet flow development and friction factor. ASME J. Basic Engng 85, 4753.Google Scholar
Naqavi, I. Z., Tucker, P. G. & Liu, Y. 2014 Large-eddy simulation of the interaction of wall jets with external stream. Intl J. Heat Fluid Flow 50, 431444.Google Scholar
Narasimha, R., Narayan, K. Y. & Parthasarathy, S. P. 1973 Parametric analysis of turbulent wall jets in still air. Aeronaut. J. 77, 355358.Google Scholar
Orlanski, I. 1976 A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 21, 251269.Google Scholar
Pouransari, Z., Biferale, L. & Johansson, A. V. 2015 Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets. Phys. Fluids 27, 025102.Google Scholar
Pouransari, Z., Brethouwer, G. & Johansson, A. V. 2011 Direct numerical simulation of an isothermal reacting turbulent wall-jet. Phys. Fluids 23, 085104.Google Scholar
Pouransari, Z., Vervisch, L. & Johansson, A. V. 2013 Heat release effects on mixing scales of non-premixed turbulent wall-jets: a direct numerical simulation study. Intl J. Heat Fluid Flow 40, 6580.Google Scholar
Pouransari, Z., Vervisch, L. & Johansson, A. V. 2014 Reynolds number effects on statistics and structure of an isothermal reacting turbulent wall-jet. Flow Turbul. Combust. 92, 931945.Google Scholar
Radhakrishnan, S., Keating, A., Piomelli, U. & Lopes, A. S.2006a Large-eddy simulations of high Reynolds-number flow over a contoured ramp. AIAA Paper 2006-0899.Google Scholar
Radhakrishnan, S., Piomelli, U., Keating, A. & Lopes, A. S. 2006b Reynolds-averaged and large-eddy simulations of turbulent non-equilibrium flows. J. Turbul. 7, 130.Google Scholar
Rostamy, N., Bergstrom, D. J., Sumner, D. & Bugg, J. D. 2011a The effect of surface roughness on the turbulence structure of a plane wall jet. Phys. Fluids 23, 085103.Google Scholar
Rostamy, N., Bergstrom, D. J., Sumner, D. & Bugg, J. D. 2011b An experimental study of a turbulent wall jet on smooth and transitionally rough surfaces. Trans. ASME J. Fluids Engng 133, 111207–111207–8.Google Scholar
Schlatter, P., Orlu, R., Li, Q., Brethouwer, G., Fransson, J. H. M., Johansson, A. V., Alfredsson, P. H. & Henningson, D. S. 2009 Turbulent boundary layers up to Re 𝜃 = 2500 studied through simulation and experiment. Phys. Fluids 21, 051702.Google Scholar
Schwarz, W. H. & Cosart, W. P. 1961 The two-dimensional turbulent wall-jet. J. Fluid Mech. 10, 481495.Google Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to r 𝜃 = 1410. J. Fluid Mech. 187, 6198.Google Scholar
Tachie, M. F., Balachandar, R. & Bergstrom, D. J. 2004 Roughness effects on turbulent plane wall jets in an open channel. Exp. Fluids 37, 281292.Google Scholar
Tang, Z., Rostamy, N., Bergstrom, D. J., Bugg, J. D. & Sumner, D. 2015 Incomplete similarity of a plane turbulent wall jet on smooth and transitionally rough surfaces. J. Turbul. 16 (11), 10761090.Google Scholar
Wu, X. & Moin, P. 2009 Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 541.Google Scholar
Wygnanski, I., Katz, Y. & Horev, E. 1992 On the applicability of various scaling laws to the turbulent wall jet. J. Fluid Mech. 234, 669690.Google Scholar
Yuan, J. & Piomelli, U. 2015 Numerical simulation of a spatially developing accelerating boundary layer over roughness. J. Fluid Mech. 780, 192214.Google Scholar
Zhou, M. D., Heine, C. & Wygnanski, I. 1996 The effects of excitation on the coherent and random motion in a plane wall jet. J. Fluid Mech. 310, 137.Google Scholar