Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T11:55:23.435Z Has data issue: false hasContentIssue false

Direct numerical and large-eddy simulation of trefoil knotted vortices

Published online by Cambridge University Press:  15 January 2021

Xinran Zhao
Affiliation:
School of Mechanical Engineering, Purdue University, IN 47907, USA
Zongxin Yu
Affiliation:
School of Mechanical Engineering, Purdue University, IN 47907, USA
Jean-Baptiste Chapelier
Affiliation:
School of Mechanical Engineering, Purdue University, IN 47907, USA
Carlo Scalo*
Affiliation:
School of Mechanical Engineering, Purdue University, IN 47907, USA
*
Email address for correspondence: scalo@purdue.edu

Abstract

This paper investigates pre- and post-reconnection dynamics of an unperturbed trefoil knotted vortex for circulation-based Reynolds numbers $Re_\varGamma = 2\times 10^3$ and $6\times 10^3$ by means of direct numerical simulations based on an adaptive mesh refinement framework. Companion coherent-vorticity preserving large-eddy simulations are also carried out on a uniform Cartesian grid. The complete vortex structure and flow evolution are simulated, including reconnection and subsequent separation into a smaller and a larger vortex ring, and the resulting helicity dynamics. The self-advection velocity before reconnection is found to scale with inviscid parameters. The reconnection process, however, occurs earlier (and more rapidly) in the higher Reynolds number case due to higher induced velocities associated with a thinner vortex core. The vortex propagation velocities after reconnection and separation are also affected by viscous effects, more prominently for the smaller vortex ring; the larger one is shown to carry the bulk of the helicity and enstrophy after reconnection. The domain integrated, or total helicity, $H(t)$, does not significantly change up until reconnection, at which point it varies abruptly due to the rapid dissipation of helicity caused by super-helicity hotspots localized at the reconnection sites. The total helicity dissipation rate predicted by the large-eddy simulation agrees reasonably well with the direct numerical simulation results, with a significant contribution from the modelled subgrid-scale stresses. On the other hand, variations in the vortex centreline helicity, $H_C(t)$, and the vortex-tube-integrated helicity $H_V(t)$ are less sensitive to the reconnection process. Periodic vortex bursting events are also observed and are shown to be due to converging axial flow velocities in the detached vortex rings at later stages of evolution.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almgren, A. S., Buttke, T. & Colella, P. 1994 A fast adaptive vortex method in three dimensions. J. Comput. Phys. 113 (2), 177200.CrossRefGoogle Scholar
Anderson, M., Hirschmann, E. W., Liebling, S. L. & Neilsen, D. 2006 Relativistic MHD with adaptive mesh refinement. Class. Quant. Grav. 23 (22), 65036524.CrossRefGoogle Scholar
Aref, H. & Zawadzki, I. 1991 Linking of vortex rings. Nature 354, 5053.Google Scholar
Ashurst, W. T. & Meiron, D. I. 1987 Numerical study of vortex reconnection. Phys. Rev. Lett. 58, 16321635.CrossRefGoogle ScholarPubMed
Barenghi, C. F. 2007 Knots and unknots in superfluid turbulence. Milan J. Maths 75 (1), 177196.CrossRefGoogle Scholar
Benkenida, A., Bohbot, J. & Jouhaud, J. C. 2002 Patched grid and adaptive mesh refinement strategies for the calculation of the transport of vortices. Intl J. Numer. Meth. Fluids 40 (7), 855873.CrossRefGoogle Scholar
Boratav, O. N., Pelz, R. B. & Zabusky, N. J. 1992 Reconnection in orthogonally interacting vortex tubes: direct numerical simulations and quantifications. Phys. Fluids 4 (3), 581605.CrossRefGoogle Scholar
Chaderjian, N. M. 2012 Advances in rotor performance and turbulent wake simulation using des and adaptive mesh refinement. NASA Tech. Rep. ARC-E-DAA-TN5574. Ames Research Center.Google Scholar
Chaderjian, N. M. & Ahmad, J. U. 2012 Detached eddy simulation of the uh-60 rotor wake using adaptive mesh refinement. NASA Tech. Rep. ARC-E-DAA-TN5074. Ames Research Center.Google Scholar
Chapelier, J.-B., Wasistho, B. & Scalo, C. 2018 A coherent vorticity preserving eddy-viscosity correction for large-eddy simulation. J. Comput. Phys. 359, 164182.CrossRefGoogle Scholar
Chapelier, J.-B., Wasistho, B. & Scalo, C. 2019 Large-eddy simulation of temporally developing double helical vortices. J. Fluid Mech. 863, 79113.CrossRefGoogle Scholar
Chen, X. & Yang, V. 2014 Thickness-based adaptive mesh refinement methods for multi-phase flow simulations with thin regions. J. Comput. Phys. 269, 2239.CrossRefGoogle Scholar
Crow, S. C. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8 (12), 21722179.CrossRefGoogle Scholar
Dumbser, M., Zanotti, O., Hidalgo, A. & Balsara, D. S. 2013 ADER-WENO finite volume schemes with space–time adaptive mesh refinement. J. Comput. Phys. 248, 257286.CrossRefGoogle Scholar
Erlebacher, G., Hussaini, M. Y., Speziale, C. G. & Zang, T. A. 1992 Toward the large-eddy simulation of compressible turbulent flows. J. Fluid Mech. 238 (1), 155185.CrossRefGoogle Scholar
Fohl, T. & Turner, J. S. 1975 Colliding vortex rings. Phys. Fluids 18, 433436.CrossRefGoogle Scholar
Harris, R. E., Sheta, E. F. & Habchi, S. D. 2010 Efficient adaptive cartesian vorticity transport solver for vortex-dominated flows. AIAA J. 48 (9), 21572164.CrossRefGoogle Scholar
Hussain, A. K. M. F. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303356.CrossRefGoogle Scholar
Hussain, F. & Duraisamy, K. 2011 Mechanics of viscous vortex reconnection. Phys. Fluids 23 (2), 021701.CrossRefGoogle Scholar
Kerr, R. 2018 a Enstrophy and circulation scaling for Navier–Stokes reconnection. J. Fluid Mech. 839, R2.CrossRefGoogle Scholar
Kerr, R. M. 2018 b Trefoil knot timescales for reconnection and helicity. Fluid Dyn. Res. 50 (1), 011422.CrossRefGoogle Scholar
Kerr, R. M. & Hussain, F. 1989 Simulation of vortex reconnection. Physica D 37 (1), 474484.CrossRefGoogle Scholar
Kida, S. & Takaoka, M. 1987 Bridging in vortex reconnection. Phys. Fluids 30 (10), 29112914.CrossRefGoogle Scholar
Kida, S. & Takaoka, M. 1988 Reconnection of vortex tubes. Fluid Dyn. Res. 3, 257261.CrossRefGoogle Scholar
Kida, S. & Takaoka, M. 1994 Vortex reconnection. Annu. Rev. Fluid Mech. 26 (1), 169177.CrossRefGoogle Scholar
Kida, S., Takaoka, M. & Hussain, F. 1989 Reconnection of two vortex rings. Phys. Fluids A 1 (4), 630632.CrossRefGoogle Scholar
Kimura, Y. & Moffatt, K. 2014 Reconnection of skewed vortices. J. Fluid Mech. 751, 329345.CrossRefGoogle Scholar
Kleckner, D. & Irvine, W. T. M. 2013 Creation and dynamics of knotted vortices. Nat. Phys. 9 (4), 253258.CrossRefGoogle Scholar
Kozik, E. & Svistunov, B. 2004 Kelvin-wave cascade and decay of superfluid turbulence. Phys. Rev. Lett. 92 (3), 035301.CrossRefGoogle ScholarPubMed
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.CrossRefGoogle Scholar
Leonard, A. 1974 Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. 18, 237248.CrossRefGoogle Scholar
Lesieur, M. & Comte, P. 2001 Favre filtering and macro-temperature in large-eddy simulations of compressible turbulence. CR. Acad. Sci. II 329 (5), 363368.Google Scholar
Lesieur, M. & Metais, O. 1996 New trends in large-eddy simulations of turbulence. Ann. Rev. Fluid Mech. 28 (1), 4582.CrossRefGoogle Scholar
Lesieur, M., Métais, O. & Comte, P. 2005 Large-Eddy Simulations of Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Li, Y., Meneveau, C., Chen, S. & Eyink, G. L. 2006 Subgrid-scale modeling of helicity and energy dissipation in helical turbulence. Phys. Rev. E 74 (2), 026310.CrossRefGoogle ScholarPubMed
MacNeice, P., Olson, K. M., Mobarry, C., De Fainchtein, R. & Packer, C. 2000 Paramesh: a parallel adaptive mesh refinement community toolkit. Comput. Phys. Commun. 126 (3), 330354.CrossRefGoogle Scholar
Maucher, F., Gardiner, S. A. & Hughes, I. G. 2016 Excitation of knotted vortex lines in matter waves. New J. Phys. 18 (6), 063016.CrossRefGoogle Scholar
McGavin, P. & Pontin, D. I. 2019 Reconnection of vortex tubes with axial flow. Phys. Rev. Fluids 4 (2), 024701.CrossRefGoogle Scholar
Melander, M. V. & Hussain, F. 1988 Cut-and-connect of two antiparallel vortex tubes. In Studying Turbulence Using Numerical Simulation Databases, 2 (Center for Turbulence Research Proceedings, 1988), pp. 257–286.Google Scholar
Melander, M. V. & Hussain, F. 1994 Core dynamics on a vortex column. Fluid Dyn. Res. 13 (1), 1.Google Scholar
Misaka, T., Holzäpfel, F., Hennemann, I., Gerz, T., Manhart, M. & Schwertfirm, F. 2012 Vortex bursting and tracer transport of a counter-rotating vortex pair. Phys. Fluids 24 (2), 025104.CrossRefGoogle Scholar
Moet, H., Laporte, F., Chevalier, G. & Poinsot, T. 2005 Wave propagation in vortices and vortex bursting. Phys. Fluids 17 (5), 054109.CrossRefGoogle Scholar
Moffatt, H. K. & Kimura, Y. 2019 Towards a finite-time singularity of the Navier–Stokes equations. Part 1. Derivation and analysis of dynamical system. J. Fluid Mech. 861, 930967.CrossRefGoogle Scholar
Nagarajan, S., Lele, S. K. & Ferziger, J. H. 2003 A robust high-order compact method for large eddy simulation. J. Comput. Phys. 191, 392419.CrossRefGoogle Scholar
Olsen, J. H., Goldburg, A. & Rogers, M. 1970 Aircraft Wake Turbulence and its Detection. Courier Corporation.Google Scholar
Oshima, Y. & Asaka, S. 1977 Interaction of two vortex rings along parallel axes in air. J. Phys. Soc. Japan 42, 708713.CrossRefGoogle Scholar
Oshima, Y. & Izutsu, N. 1988 Cross-linking of two vortex rings. Phys. Fluids 31, 24012403.CrossRefGoogle Scholar
Pau, G. S. H., Bell, J. B., Almgren, A. S., Fagnan, K. M. & Lijewski, M. J. 2012 An adaptive mesh refinement algorithm for compressible two-phase flow in porous media. Comput. Geosci. 16 (3), 577592.CrossRefGoogle Scholar
Petersen, R. A., Kaplan, R. E. & Laufer, J. 1974 Ordered structures and jet noise. NASA Tech. Rep. NASA-CR-134733.Google Scholar
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible euler equations in complex geometries. J. Comput. Phys. 190 (2), 572600.Google Scholar
Popinet, S. & Rickard, G. 2007 A tree-based solver for adaptive ocean modelling. Ocean Model. 16 (3–4), 224249.CrossRefGoogle Scholar
Pumir, A. & Kerr, R. 1987 Numerical simulation of interacting vortex tubes. Phys. Rev. Lett. 58, 16361639.CrossRefGoogle ScholarPubMed
Sagaut, P. 2006 Large-Eddy Simulation for Incompressible Flows: An Introduction. Springer.Google Scholar
Schatzle, P. R. 1987 An experimental study of fusion of vortex rings. PhD thesis, California Institute of Technology.Google Scholar
Scheeler, M. W., Kleckner, D., Proment, D., Kindlmann, G. L. & Irvine, W. T. M. 2014 Helicity conservation by flow across scales in reconnecting vortex links and knots. Proc. Natl Acad. Sci. USA 111 (43), 1535015355.CrossRefGoogle ScholarPubMed
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. Mon. Weath. Rev. 91 (3), 99164.2.3.CO;2>CrossRefGoogle Scholar
Spalart, P. R. 1998 Airplane trailing vortices. Annu. Rev. Fluid Mech. 30 (1), 107138.CrossRefGoogle Scholar
Sujudi, D. & Haimes, R. 1995 Identification of swirling flow in 3-d vector fields. In 12th Computational Fluid Dynamics Conference, p. 1715. AIAA.CrossRefGoogle Scholar
Tiwari, A., Freund, J. B. & Pantano, C. 2013 A diffuse interface model with immiscibility preservation. J. Comput. Phys. 252, 290309.CrossRefGoogle ScholarPubMed
Van Hoydonck, W. R. M., Bakker, R. J. J. & Van Tooren, M. J. L. 2010 A new method for rotor wake analysis using non-uniform rational b-spline primitives. In 36th European Rotorcraft Forum in Paris, France, vol. 52, NLR-TP-2010-465. National Aerospace Laboratory.Google Scholar
Van Rees, W. M., Hussain, F. & Koumoutsakos, P. 2012 Vortex tube reconnection at $Re = 10\,000$. Phys. Fluids 24 (7), 075105.CrossRefGoogle Scholar
Vatistas, G. H, Kozel, V. & Mih, W. C. 1991 A simpler model for concentrated vortices. Exp. Fluids 11 (1), 7376.CrossRefGoogle Scholar
Vinen, W. F., Tsubota, M. & Mitani, A. 2003 Kelvin-wave cascade on a vortex in superfluid h e 4 at a very low temperature. Phys. Rev. Lett. 91 (13), 135301.CrossRefGoogle Scholar
Wissink, A., Kamkar, S., Pulliam, T., Sitaraman, J. & Sankaran, V. 2010 Cartesian adaptive mesh refinement for rotorcraft wake resolution. In 28th AIAA Applied Aerodynamics Conference, p. 4554.Google Scholar
Yao, J. & Hussain, F. 2020 a On singularity formation via viscous vortex reconnection. J. Fluid Mech. 888, R2.CrossRefGoogle Scholar
Yao, J. & Hussain, F. 2020 b A physical model of turbulence cascade via vortex reconnection sequence and avalanche. J. Fluid Mech. 883, A51.CrossRefGoogle Scholar
Yepez, J., Vahala, G., Vahala, L. & Soe, M. 2009 Superfluid turbulence from quantum kelvin wave to classical Kolmogorov cascades. Phys. Rev. Lett. 103 (8), 084501.CrossRefGoogle ScholarPubMed
Yu, Z., Chapelier, J.-B. & Scalo, C. 2017 Coherent-vorticity preserving large-eddy simulation of trefoil knotted vortices. In 70th Annual Meeting of the APS Division of Fluid Dynamics, p. V0084. American Physical Society.CrossRefGoogle Scholar
Zabusky, N., Boratav, O. N., Pelz, R. B., Gao, M., Silver, D. & Cooper, S. P. 1991 Emergence of coherent patterns of vortex stretching during reconnection: a scattering paradigm. Phys. Rev. Lett. 67, 24692472.CrossRefGoogle ScholarPubMed
Zabusky, N. J. & Melander, M. V. 1989 Three-dimensional vortex tube reconnection: morphology for orthogonally-offset tubes. Physica D 37 (1), 555562.CrossRefGoogle Scholar
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1980 Vortex pairing in a circular jet under controlled excitation. Part 1. General jet response. J. Fluid Mech. 101 (3), 449491.CrossRefGoogle Scholar
Zhao, X. & Scalo, C. 2020 A compact-finite-difference-based numerical framework for adaptive-grid-refinement simulations of vortex-dominated flows. In AIAA Scitech 2020 Forum. AIAA Paper 2020-3073.CrossRefGoogle Scholar