Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T01:24:50.309Z Has data issue: false hasContentIssue false

Deformability of discs in turbulence

Published online by Cambridge University Press:  17 December 2021

Gautier Verhille*
Affiliation:
Aix-Marseille Univ., CNRS, Centrale Marseille, IRPHE, 13013 Marseille, France
*
Email address for correspondence: gautier.verhille@irphe.univ-mrs.fr

Abstract

The aim of this study is to investigate experimentally the transition from a rigid regime to a deformed regime for flexible discs freely advected in turbulent flows. For a given disc, the amplitude of the deformation is expected to increase when its bending modulus decreases or when the turbulent kinetic energy increases. To quantify this qualitative argument, experiments are performed where the deformation of flexible discs is measured using three cameras. The amplitude of the deformation has been characterised by the eigenvalues of the moment of inertia tensor. Experimental results exhibit a transition from a rigid regime to a deformed regime that depends on the size, the density and the flexibility of the disc and the turbulent kinetic energy. The modelling of this transition is a generalisation and an extension of the previous models used to characterise the deformation of flexible fibres in turbulent flows.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrawal, A., Ramalingam, S., Taguchi, Y. & Chari, V. 2012 A theory of multi-layer flat refractive geometry. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3346–3353. IEEE.CrossRefGoogle Scholar
Alben, S. 2010 Flexible sheets falling in an inviscid fluid. Phys. Fluids 22 (6), 061901.CrossRefGoogle Scholar
Allende, S., Henry, C. & Bec, J. 2018 Stretching and buckling of small elastic fibers in turbulence. Phys. Rev. Lett. 121 (15), 154501.CrossRefGoogle ScholarPubMed
Allende, S., Henry, C. & Bec, J. 2020 Dynamics and fragmentation of small inextensible fibers in turbulence. Phil. Trans. R. Soc. Lond. A 378 (2175), 20190398.Google Scholar
Andrady, A.L. 2017 The plastic in microplastics: a review. Mar. Pollut. Bull. 119 (1), 1222.CrossRefGoogle ScholarPubMed
Auguste, F., Magnaudet, J. & Fabre, D. 2013 Falling styles of disks. J. Fluid Mech. 719, 388405.CrossRefGoogle Scholar
Batchelor, G.K. 1970 Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44 (3), 419440.CrossRefGoogle Scholar
Bec, J., Biferale, L., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2007 Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98 (8).CrossRefGoogle ScholarPubMed
Bordoloi, A.D., Variano, E. & Verhille, G. 2020 Lagrangian time scale of passive rotation for mesoscale particles in turbulence. Front. Mar. Sci. 7, 473.CrossRefGoogle Scholar
Bounoua, S., Bouchet, G. & Verhille, G. 2018 Tumbling of inertial fibers in turbulence. Phys. Rev. Lett. 121 (12), 124502.CrossRefGoogle ScholarPubMed
Brouzet, C., Guiné, R., Dalbe, M.-J., Favier, B., Vandenberghe, N., Villermaux, E. & Verhille, G. 2021 Laboratory model for plastic fragmentation in the turbulent ocean. Phys. Rev. Fluids 6 (2).CrossRefGoogle Scholar
Brouzet, C., Verhille, G. & Le Gal, P. 2014 Flexible fiber in a turbulent flow: a macroscopic polymer. Phys. Rev. Lett. 112 (7), 074501.CrossRefGoogle Scholar
Byron, M., Einarsson, J., Gustavsson, K., Voth, G., Mehling, B. & Variano, E. 2015 Shape-dependence of particle rotation in isotropic turbulence. Phys. Fluids 27, 035101.CrossRefGoogle Scholar
Byron, M.L., Tao, Y., Houghton, I.A. & Variano, E.A. 2019 Slip velocity of large low-aspect-ratio cylinders in homogeneous isotropic turbulence. Intl J. Multiphase Flow 121, 103120.CrossRefGoogle Scholar
Cheung, K.-M., Baker, S. & Kanade, T. 2005 Shape-from-silhouette across time. Part I: theory and algorithms. Intl J. Comput. Vis. 62 (3), 221247.CrossRefGoogle Scholar
Chevillard, L. & Meneveau, C. 2013 Orientation dynamics of small, triaxial–ellipsoidal particles in isotropic turbulence. J. Fluid Mech. 737, 571596.CrossRefGoogle Scholar
Cisse, M., Homann, H. & Bec, J. 2013 Slipping motion of large neutrally buoyant particles in turbulence. J. Fluid Mech. 735.CrossRefGoogle Scholar
Cózar, A., et al. 2014 Plastic debris in the open ocean. Proc. Natl Acad. Sci. USA 111 (28), 1023910244.CrossRefGoogle ScholarPubMed
Cózar, A., et al. 2017 The arctic ocean as a dead end for floating plastics in the north atlantic branch of the thermohaline circulation. Sci. Adv. 3, e1600582.CrossRefGoogle ScholarPubMed
De La Rosa Zambrano, H.M., Verhille, G. & Le Gal, P. 2018 Fragmentation of magnetic particle aggregates in turbulence. Phys. Rev. Fluids 3 (8), 084605.CrossRefGoogle Scholar
Elgobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309329.CrossRefGoogle Scholar
Esteban, L.B., Shrimpton, J.S. & Ganapathisubramani, B. 2019 Disks settling in turbulence. J. Fluid Mech. 883, A58.Google Scholar
Faugeras, O. & Luong, Q.-T. 2001 The Geometry of Multiple Images. MIT.CrossRefGoogle Scholar
Fernandes, P.C., Ern, P., Risso, F. & Magnaudet, J. 2008 Dynamics of axisymmetric bodies rising along a zigzag path. J. Fluid Mech. 606, 209223.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence, the Legacy of A.N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Gay, A., Favier, B. & Verhille, G. 2018 Characterisation of flexible fibre deformations in turbulence. Europhys. Lett. 123 (2), 24001.CrossRefGoogle Scholar
Gemmrich, J.R. & Farmer, D.M. 2004 Near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr. 34, 10671086.2.0.CO;2>CrossRefGoogle Scholar
van Gils, D.P.M., Guzman, D.N., Sun, C. & Lohse, D. 2013 The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow. J. Fluid Mech. 722, 317347.CrossRefGoogle Scholar
Gosselin, F., de Langre, E. & Machado-Almeida, B.A. 2010 Drag reduction of flexible plates by reconfiguration. J. Fluid Mech. 650, 319341.CrossRefGoogle Scholar
Guasto, J.S., Rusconi, R. & Stocker, R. 2012 Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech. 44, 373400.CrossRefGoogle Scholar
Hartley, R. & Zisserman, A. 2003 Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press.Google Scholar
Heisinger, L., Newton, P. & Kanso, E. 2014 Coins falling in water. J. Fluid Mech. 742, 243253.CrossRefGoogle Scholar
Jenny, M., Duek, J. & Bouchet, G. 2004 Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. J. Fluid Mech. 508, 201239.CrossRefGoogle Scholar
Klein, S., Gibert, M., Bérut, A. & Bodenschatz, E. 2013 Simultaneous 3D measurement of the translation and rotation of finite-size particles and the flow field in a fully developed turbulent water flow. Meas. Sci. Technol. 24, 024006.CrossRefGoogle Scholar
Labbé, R., Pinton, J.-F. & Fauve, S. 1995 Study of the von Kármán flow between coaxial corotating disks. Phys. Fluids 8 (4), 914.CrossRefGoogle Scholar
Lohse, D. 2018 Bubble puzzles: from fundamentals to applications. Phys. Rev. Fluids 3 (11).CrossRefGoogle Scholar
Loisy, A. & Naso, A. 2017 Interaction between a large buoyant bubble and turbulence. Phys. Rev. Fluids 2 (1), 014606.CrossRefGoogle Scholar
Monchaux, R., et al. 2009 The von Kármán sodium experiment: turbulent dynamical dynamos. Phys. Fluids 21 (3), 035108.CrossRefGoogle Scholar
Morét-Ferguson, S., Law, K.L., Proskurowski, G., Murphy, E.K., Peacock, E.E. & Reddy, C.M. 2010 The size, mass, and composition of plastic debris in the western north atlantic ocean. Mar. Pollut. Bull. 60 (10), 18731878.CrossRefGoogle ScholarPubMed
Oehmke, T., Bordoloi, A., Variano, E. & Verhille, G. 2021 Spinning and tumbling of long fibers in isotropic turbulence. Phys. Rev. Fluids 6, 044610.CrossRefGoogle Scholar
Parsa, S., Calzavarini, E., Toschi, F. & Voth, G.A. 2012 Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109 (13), 134501.CrossRefGoogle ScholarPubMed
Parsa, S. & Voth, G.A. 2014 Inertial range scaling in rotations of long rods in turbulence. Phys. Rev. Lett. 112 (02), 024501.CrossRefGoogle ScholarPubMed
Picardo, J.R., Singh, R., Ray, S.S. & Vincenzi, D. 2020 Dynamics of a long chain in turbulent flows: impact of vortices. Phil. Trans. R. Soc. Lond. A 378, 20190405.Google ScholarPubMed
Pinton, J.-F., Holdsworth, P.C.W. & Labbé, R. 1999 Power fluctuations in a closed turbulent shear flow. Phys. Rev. E 60 (3), R2452R2455.CrossRefGoogle Scholar
Pujara, N., Oehmke, T.B., Bordoloi, A.D. & Variano, E.A. 2018 Rotations of large inertial cubes, cuboids, cones, and cylinders in turbulence. Phys. Rev. Fluids 3 (5), 054605.CrossRefGoogle Scholar
Pumir, A. & Wilkinson, M. 2016 Collisional aggregation due to turbulence. Annu. Rev. Condens. Matter Phys. 7, 141170.CrossRefGoogle Scholar
Qureshi, N.M., Bourgoin, M., Baudet, C., Cartellier, A. & Gagne, Y. 2007 Turbulent transport of material particles: an experimental study of finite size effects. Phys. Rev. Lett. 99 (18), 184502.CrossRefGoogle ScholarPubMed
Ravelet, F., Colin, C. & Risso, F. 2011 On the dynamics and breakup of a bubble immersed in a turbulent flow. Phys. Fluids 23, 103301.CrossRefGoogle Scholar
Rosti, M.E., Banaei, A.A., Brandt, L. & Mazzino, A. 2018 Flexible fiber reveals the two-point statistical properties of turbulence. Phys. Rev. Lett. 121 (4), 044501.CrossRefGoogle ScholarPubMed
Schouveiler, L. & Boudaoud, A. 2006 The rolling up of sheets in a steady flow. J. Fluid Mech. 563, 71.CrossRefGoogle Scholar
Shin, M. & Koch, D.L. 2005 Rotational and translational dispersion of fibres in isotropic turbulent flows. J. Fluid Mech. 540, 143173.CrossRefGoogle Scholar
Sulaiman, M., Climent, E., Delmotte, B., Fede, P., Plouraboué, F. & Verhille, G. 2019 Numerical modelling of long flexible fibers in homogeneous isotropic turbulence. Eur. Phys. J. E 42, 132.CrossRefGoogle ScholarPubMed
Tam, D., Bush, J.W.M., Robitaille, M. & Kudrolli, A. 2010 Tumbling dynamics of passive flexible wings. Phys. Rev. Lett. 104 (18), 184504.CrossRefGoogle ScholarPubMed
Vanapalli, S.A., Ceccio, S.L & Solomon, M.J. 2006 Universal scaling for polymer chain scission in turbulence. Proc. Natl Acad. Sci. USA 103 (45), 1666016665.CrossRefGoogle ScholarPubMed
Verhille, G. & Bartoli, A. 2016 3D conformation of a flexible fiber in a turbulent flow. Exp. Fluids 57 (7), 117.CrossRefGoogle Scholar
Vincent, L., Zheng, M., Costello, J.H. & Kanso, E. 2020 Enhanced flight performance in non-uniformly flexible wings. Interface 17, 20200352.Google Scholar
Vincenzi, D., Watanabe, T., Sankar Ray, S. & Picardo, J.R. 2021 Polymer scission in turbulent flows. J. Fluid Mech. 912, A18.CrossRefGoogle Scholar
Volk, R., Calzavarini, E., Lévèque, E. & Pinton, J.-F. 2011 Dynamics of inertial particles in a turbulent von Kármán flow. J. Fluid Mech. 668, 223235.CrossRefGoogle Scholar
Volk, R., Calzavarini, E., Verhille, G., Lohse, D., Mordant, N., Pinton, J.-F. & Toschi, F. 2008 Acceleration of heavy and light particles in turbulence: comparison between experiments and direct numerical simulations. Physica D 237 (14–17), 20842089.CrossRefGoogle Scholar
Voth, G.A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49, 249276.CrossRefGoogle Scholar
Xu, D. & Chen, J. 2013 Accurate estimate of turbulent dissipation rate using PIV data. Exp. Therm. Fluid Sci. 44, 662672.CrossRefGoogle Scholar
Yamakawa, H. 1971 Modern Theory of Polymer Solutions. Harper & Rows.Google Scholar