Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T10:53:42.809Z Has data issue: false hasContentIssue false

Decoupled rolling, sliding and sticking of a viscoplastic drop on a superhydrophobic surface

Published online by Cambridge University Press:  15 December 2020

Minyoung Kim
Affiliation:
Department of Chemical Engineering, The Pennsylvania State University, University Park, PA16802, USA
Eungjun Lee
Affiliation:
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, South Korea
Do Hyun Kim*
Affiliation:
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, South Korea
Rhokyun Kwak*
Affiliation:
Department of Mechanical Engineering, Hanyang University, Seoul04763, South Korea Institute of Nano Science and Technology, Hanyang University, Seoul04763, South Korea
*
Email addresses for correspondence: dohyun.kim@kaist.edu; rhokyun@hanyang.ac.kr
Email addresses for correspondence: dohyun.kim@kaist.edu; rhokyun@hanyang.ac.kr

Abstract

While the dynamics of Newtonian fluid drops on an inclined non-wettable surface has been widely reported, that of viscoplastic drops is less well known. Combining experimental and theoretical analysis, we reveal unique behaviours of viscoplastic drops on an inclined superhydrophobic surface: (i) decoupled rolling, sliding and sticking motions and (ii) two distinct rolling modes, i.e. viscous rolling and rigid-body rolling. First, determined by the relative magnitudes of gravitational, yield and adhesive stresses, a viscoplastic drop rolls, slides or sticks on a superhydrophobic surface. To the best of our knowledge, this is the first distinct differentiation of viscoplastic drop motions on a superhydrophobic surface, which is a clear departure from the previous observations of Newtonian drops on superhydrophobic surfaces and viscoplastic drops on hydrophilic/hydrophobic surfaces. We subcategorized two types of rolling as liquid-like viscous rolling and solid-like rigid-body rolling. With a low Deborah number (i.e. dimensionless viscoplastic relaxation time), the viscoplastic drop shows a viscous rolling as a Newtonian drop does on an inclined surface. With a high Deborah number, however, the viscoplastic drop does not have enough time to be ‘fluid’. Consequently, the ellipsoidal drop deforms to be more spherical as it goes down the inclined surface, and tumbles, as if a solid body initiates its rolling by ‘tipping’.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ancey, C. 2007 Plasticity and geophysical flows: a review. J. Non-Newtonian Fluid Mech. 142 (1–3), 435.CrossRefGoogle Scholar
Balmforth, N. J., Craster, R. V. & Sassi, R. 2002 Shallow viscoplastic flow on an inclined plane. J. Fluid Mech. 470, 129.CrossRefGoogle Scholar
Balmforth, N. J., Frigaard, I. A. & Ovarlez, G. 2014 Yielding to stress: recent developments in viscoplastic fluid mechanics. Annu. Rev. Fluid Mech. 46, 121146.CrossRefGoogle Scholar
Boujlel, J. & Coussot, P. 2013 Measuring the surface tension of yield stress fluids. Soft Matter 9, 58985908.CrossRefGoogle Scholar
Chambon, G., Ghemmour, A. & Naaim, M. 2014 Experimental investigation of viscoplastic free-surface flows in a steady uniform regime. J. Fluid Mech. 754, 332364.CrossRefGoogle Scholar
Coussot, P. 2014 Yield stress fluid flows: a review of experimental data. J. Non-Newtonian Fluid Mech. 211, 3149.CrossRefGoogle Scholar
Coussot, P., Nguyen, Q. D., Huynh, H. T. & Bonn, D. 2002 Avalanche behavior in yield stress fluids. Phys. Rev. Lett. 88 (17), 175501.CrossRefGoogle ScholarPubMed
Coussot, P. & Ovarlez, G. 2010 Physical origin of shear-banding in jammed systems. Eur. Phys. J. E 33, 183188.CrossRefGoogle ScholarPubMed
Dinkgreve, M., Denn, M. M. & Bonn, D. 2017 “Everything flows?”: elastic effects on startup flows of yield stress fluids. Rheol. Acta 56, 189194.CrossRefGoogle Scholar
de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. 2013 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer Science & Business Media.Google Scholar
Hao, P., Lv, C., Yao, Z. & He, F. 2010 Sliding behavior of water droplet on superhydrophobic surface. Europhys. Lett. 90 (6), 66003.CrossRefGoogle Scholar
Horinaka, J., Tanaka, M. & Takigawa, T. 2015 Rheological properties of ionic liquid solutions of xanthan. Colloid Polym. Sci. 293 (9), 27092712.CrossRefGoogle Scholar
Hu, B. Y.-K. 2011 Rolling of asymmetric discs on an inclined plane. Eur. J. Phys. 32 (6), L51.CrossRefGoogle Scholar
Jaishankar, A. & McKinley, G. H. 2014 A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids. J. Rheol. 58 (6), 17511788.CrossRefGoogle Scholar
Jalaal, M., Balmforth, N. J. & Stoeber, B. 2015 Slip of spreading viscoplastic droplets. Langmuir 31 (44), 1207112075.CrossRefGoogle ScholarPubMed
Jorgensen, L., Merrer, M. L., Delanoe-Ayari, H. & Barentin, C. 2015 Yield stress and elasticity influence on surface tension measurements. Soft Matter 11, 51115121.CrossRefGoogle ScholarPubMed
Kim, H. Y., Lee, H. J. & Kang, B. H. 2002 Sliding of liquid drops down an inclined solid surface. J. Colloid Interface Sci. 247 (2), 372380.CrossRefGoogle ScholarPubMed
Luu, L. H. & Forterre, Y. 2009 Drop impact of yield-stress fluids. J. Fluid Mech. 632, 301327.CrossRefGoogle Scholar
Macosko, C. W. 1994 Rheology: Principles, Measurements, and Applications. Wiley-VCH.Google Scholar
Mahadevan, L. & Pomeau, Y. 1999 Rolling droplets. Phys. Fluids 11, 24492453.CrossRefGoogle Scholar
Mahaut, F., Chateau, X., Coussot, P. & Ovarlez, G. 2008 Yield stress and elastic modulus of suspensions of noncolloidal particles in yield stress fluids. J. Rheol. 52, 287313.CrossRefGoogle Scholar
Moller, P. C. F., Mewis, J. & Bonn, D. 2006 Yield stress and thixotrophy: on the difficulty of measuring yield stresses in practice. Soft Matter 2, 274283.CrossRefGoogle Scholar
Musterd, M., van Steijn, V., Kleijn, C. R. & Kreutzer, M. T. 2014 Droplets on inclined plates: local and global hysteresis of pinned capillary surfaces. Phys. Rev. Lett. 113 (6), 066104.CrossRefGoogle ScholarPubMed
Oishi, C. M., Thompson, R. L. & Martins, F. P. 2019 Normal and oblique drop impact of yield stress fluids with thixotropic effects. J. Fluid Mech. 876, 642679.CrossRefGoogle Scholar
Ovarlez, G., Cohen-Addad, S., Krishan, K., Goyon, J. & Coussot, P. 2013 On the existence of a simple yield stress fluid behavior. J. Non-Newtonian Fluid Mech. 193, 6879.CrossRefGoogle Scholar
Podgorski, T., Flesselles, J. M. & Limat, L. 2001 Corners, cusps, and pearls in running drops. Phys. Rev. Lett. 87 (3), 036102.CrossRefGoogle ScholarPubMed
Reiner, M. 1964 The Deborah number. Phys. Today 17 (1), 62.CrossRefGoogle Scholar
Richard, D. & Quéré, D. 1999 Viscous drops rolling on a tilted non-wettable solid. Europhys. Lett. 48 (3), 286291.CrossRefGoogle Scholar
Rio, E., Daerr, A., Andreotti, B. & Limat, L. 2005 Boundary conditions in the vicinity of a dynamic contact line: experimental investigation of viscous drops sliding down an inclined plane. Phys. Rev. Lett. 94 (2), 024503.CrossRefGoogle ScholarPubMed
Sakai, M., Song, J. H., Yoshida, N., Suzuki, S., Kameshima, Y. & Nakajima, A. 2006 Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces. Langmuir 22 (11), 49064909.CrossRefGoogle Scholar
Schellenberger, F., Encinas, N., Vollmer, D. & Butt, H. J. 2016 How water advances on superhydrophobic surfaces. Phys. Rev. Lett. 116 (9), 096101.CrossRefGoogle ScholarPubMed
Sen, S., Morales, A. G. & Ewoldt, R. H. 2020 Viscoplastic drop impact on thin films. J. Fluid Mech. 891, A27.CrossRefGoogle Scholar
Seo, K., Kim, M. & Kim, D. H. 2014 Candle-based process for creating a stable superhydrophobic surface. Carbon 68, 583596.CrossRefGoogle Scholar
Seo, K., Kim, M., Seok, S. & Kim, D. H. 2016 Transparent superhydrophobic surface by silicone oil combustion. Colloids Surf. A 492, 110118.CrossRefGoogle Scholar
Song, K. W., Kim, Y.-S. & Chang, G.-S. 2006 Rheology of concentrated xanthan gum solutions: steady shear flow behavior. Fibers Polym. 7 (2), 129138.CrossRefGoogle Scholar
Suzuki, S., Nakajima, A., Sakai, M., Sakurada, Y., Yoshida, N., Hashimoto, A., Kameshima, Y. & Okada, K. 2007 Slipping and rolling ratio of sliding acceleration for a water droplet sliding on fluoroalkylsilane coatings of different roughness. Chem. Lett. 37 (1), 5859.CrossRefGoogle Scholar
Varagnolo, S., Ferraro, D., Fantinel, P., Pierno, M., Mistura, G., Amati, G., Biferale, L. & Sbragaglia, M. 2013 Stick-slip sliding of water drops on chemically heterogeneous surfaces. Phys. Rev. Lett. 111 (6), 066101.CrossRefGoogle ScholarPubMed
Varagnolo, S., Mistura, G., Pierno, M. & Sbragaglia, M. 2015 Sliding droplets of xanthan solutions: a joint experimental and numerical study. Eur. Phys. J. E 38 (11), 126.CrossRefGoogle ScholarPubMed
Whistler, R. L. & BeMiller, J. N. 1993 Industrial Gums. Academic Press.Google Scholar
Wyatt, N. B. & Liberatore, M. W. 2009 Rheology and viscosity scaling of the polyelectrolyte xanthan gum. J. Appl. Polym. 114 (6), 40764084.CrossRefGoogle Scholar
Zhang, X., Lorenceau, E., Basset, P., Bourouina, T., Rouyer, F., Goyon, J. & Cossot, P. 2017 Wall slip of soft-jammed systems: a generic simple shear process. Phys. Rev. Lett. 119 (20), 208004.CrossRefGoogle ScholarPubMed
Zhang, X., Lorenceau, E., Bourouina, T., Basset, P., Oerther, T., Ferrari, M., Rouyer, F., Goyon, J. & Coussot, P. 2018 Wall slip mechanisms in direct and inverse emulsions. J. Rheol. 62, 14951513.CrossRefGoogle Scholar

Kim et al. supplementary movie 1

Rolling motion of a viscoplastic drop on a inclined superhydrophobic surface

Download Kim et al. supplementary movie 1(Video)
Video 542.3 KB

Kim et al. supplementary movie 2

Sliding motion of a viscoplastic drop on a inclined superhydrophobic surface

Download Kim et al. supplementary movie 2(Video)
Video 1.9 MB

Kim et al. supplementary movie 3

Rigid body motion of a viscoplastic drop

Download Kim et al. supplementary movie 3(Video)
Video 23.1 MB

Kim et al. supplementary movie 4

Tumbling and rolling off of a viscoplastic drop on a inclined superhydrophobic surface

Download Kim et al. supplementary movie 4(Video)
Video 441.4 KB