Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T22:00:17.521Z Has data issue: false hasContentIssue false

Damping of solitons by coastal vegetation

Published online by Cambridge University Press:  10 January 2025

Michele Mossa*
Affiliation:
DICATECh, Polytechnic University of Bari, Via E. Orabona 4, 70125 Bari, Italy CoNISMa, Piazzale Flaminio 9, 00196 Rome, Italy
Diana De Padova
Affiliation:
DICATECh, Polytechnic University of Bari, Via E. Orabona 4, 70125 Bari, Italy CoNISMa, Piazzale Flaminio 9, 00196 Rome, Italy
Miguel Onorato
Affiliation:
Dipartimento di Fisica and INFN, Università di Torino, Via P. Giuria 1, 10125 Torino, Italy
*
Email address for correspondence: michele.mossa@poliba.it

Abstract

Mangroves are a natural defence of the coastal strip against extreme waves. Furthermore, innovative techniques of naturally based coast defence are used increasingly, according to the canons of eco-hydraulics. Therefore, it is important to correctly evaluate the transmission of waves through cylinder arrays. In the present paper, the attenuation of solitary waves propagating through an array of rigid emergent and submerged cylindrical stems on a horizontal bottom is investigated theoretically, numerically and experimentally. The results of the theoretical model are compared with the numerical simulations obtained with the smoothed particle hydrodynamics meshless Lagrangian numerical code and with experimental laboratory data. In the latter case, solitary waves were tested on a background current, in order to reproduce more realistic sea conditions, since the absence of circulation currents is very rare in the sea. The comparison confirmed the validity of the theoretical model, allowing its use for the purposes indicated above. Furthermore, the present study allowed for an evaluation of the bulk drag coefficient of the rigid stem arrays used, as a function of their density, the stem diameter, and their submergence ratio.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albayrak, I., Nikora, V., Miler, O. & O'Hare, M. 2011 Flow–plant interactions at a leaf scale: effects of leaf shape, serration, roughness and flexural rigidity. Aquat. Sci. 74 (2), 267286.CrossRefGoogle Scholar
Antuono, M., Colagrossi, A. & Marrone, S. 2012 Numerical diffusive terms in weakly-compressible SPH schemes. Comput. Phys. Commun. 183, 25702580.CrossRefGoogle Scholar
Barile, S., De Padova, D., Mossa, M. & Sibilla, S. 2020 Theoretical analysis and numerical simulations of turbulent jets in a wave environment. Phys. Fluids 32, 035105.CrossRefGoogle Scholar
Ben Meftah, M. & Mossa, M. 2016 A modified log-law of flow velocity distribution in partly obstructed open channels. Environ. Fluid Mech. 16, 453479.CrossRefGoogle Scholar
Blank, M., Nair, P. & Pöschel, T. 2024 Surface tension and wetting at free surfaces in smoothed particle hydrodynamics. J. Fluid Mech. 987, A23.CrossRefGoogle Scholar
Boussinesq, J. 1872 Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17, 55108.Google Scholar
Crespo, A.J.C., Domınguez, J.M., Rogers, B.D., Gómez-Gesteira, M., Longshaw, S., Canelas, R., Vacondio, R., Barreiro, A. & García-Feal, O. 2015 DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput. Phys. Commun. 187, 204216.CrossRefGoogle Scholar
Dahdouh-Guebas, F. & Koedam, N. 1953 Coastal vegetation and the Asian Tsunami. Science 311 (5757), 37.CrossRefGoogle Scholar
Daily, J.M. & Stephan, S.C. 1953 Characteristics of the solitary wave. Trans. Am. Soc. Civ. Engrs 118 (1), 575587.CrossRefGoogle Scholar
Dalrymple, R.A. & Rogers, B.D. 2006 Numerical modeling of water waves with the SPH method. Coast. Engng 53, 141147.CrossRefGoogle Scholar
Danielsen, F., et al. 2005 The Asian Tsunami: a protective role for coastal vegetation. Science 310 (5748), 643.CrossRefGoogle Scholar
Das, S. & Jeffrey, R.V. 2009 Mangroves protected villages and reduced death toll during Indian super cyclone. Proc. Natl Acad. Sci. USA 106 (18), 73577360.CrossRefGoogle ScholarPubMed
De Padova, D., Ben Meftah, M., Mossa, M. & Sibilla, S. 2022 A multi-phase SPH simulation of hydraulic jump oscillations and local scouring processes downstream of bed sills. Adv. Water Resour. 159, 104097.CrossRefGoogle Scholar
De Padova, D., Dalrymple, R.A. & Mossa, M. 2014 Analysis of the artificial viscosity in the smoothed particle hydrodynamics modelling of regular waves. J. Hydraul. Res. 52, 836848.CrossRefGoogle Scholar
De Padova, D., Mossa, M., Sibilla, S. & Torti, E. 2013 3D SPH modeling of hydraulic jump in a very large channel. J. Hydraul. Res. 51, 158173.CrossRefGoogle Scholar
Domínguez, J.M., Crespo, A.J.C. & Gómez-Gesteira, M. 2013 Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method. Comput. Phys. Commun. 184, 617627.CrossRefGoogle Scholar
Domínguez, J.M., Fourtakas, G., Altomare, C., Canelas, R.B., Tafuni, A., García-Feal, O., Martínez-Estévez, I., Mokos, A., Vacondio, R. & Crespo, A.J.C. 2021 DualSPHysics: from fluid dynamics to multiphysics problems. Comput. Part. Mech. 9, 867895.CrossRefGoogle Scholar
Favre, A. 1969 Statistical equations of turbulent gases. In Problems of Hydrodynamics and Continuum Mechanics, pp. 231–266. SIAM.Google Scholar
Fulk, D.A. & Quinn, D.W. 2018 An analysis of 1-D smoothed particle hydrodynamics kernels. J. Comput. Phys. 126 (1), 165180.CrossRefGoogle Scholar
Gijón Mancheño, A., Jansen, W., Uijttewaal, W., Reniers, A.J.H.M., van Rooijen, A.A., Suzuki, T., Etminan, V. & Winterwerp, J.C. 2021 Wave transmission and drag coefficients through dense cylinder arrays: implications for designing structures for mangrove restoration. Ecol. Engng 165, 106231.CrossRefGoogle Scholar
Gilman, E.L., Ellison, J., Duke, N.C. & Field, C. 2008 Threats to mangroves from climate change and adaptation options: a review. Aquat. Bot. 89 (2), 237250.CrossRefGoogle Scholar
Goring, D.G. 1978 Tsunamis: the propagation of long waves onto a shelf, Keck Lab report KH-R-38, https://doi.org/10.7907/Z9W957BN.CrossRefGoogle Scholar
Gotoh, H., Shibahara, T. & Sakai, T. 2001 Sub-particle-scale turbulence model for the MPS method – Lagrangian flow model for hydraulic engineering. Adv. Meth. Comput. Fluid Dyn. 9, 339349.Google Scholar
Hedges, T.S. 1987 Combinations of waves and currents: an introduction. Proc. Inst. Civ. Engrs 82 (3), 567584.Google Scholar
Hu, Z., Suzuki, T., Zitman, T., Uittewaal, W. & Stive, M. 2014 Laboratory study on wave dissipation by vegetation in combined current–wave flow. Coast. Engng 88, 131142.CrossRefGoogle Scholar
Huang, Z., Yao, Y., Sim, S.Y. & Yao, Y. 2011 Interaction of solitary waves with emergent, rigid vegetation. Ocean Engng 38 (10), 10801088.CrossRefGoogle Scholar
Kathiresan, K. & Rajendran, N. 2005 Coastal mangrove forests mitigated tsunami. Estuar. Coast. Shelf Sci. 65 (3), 601606.CrossRefGoogle Scholar
Keulegan, G.H. & Carpenter, L.H. 1958 Forces on cylinders and plates in an oscillating fluid. J. Res. Natl Bur. Stand. 60 (5), 423440.CrossRefGoogle Scholar
Kobayashi, N. & Lawrence, A.R. 2004 Cross-shore sediment transport under breaking solitary waves. J. Geophys. Res. 109, C03047.Google Scholar
Lauren, N.A., Irish, J.L. & Lynett, P. 2009 Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation. Coast. Engng 56, 332340.Google Scholar
Liu, P. & Liu, P.L.F. 1998 Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone. J. Geophys. Res. Oceans 103, 1567715694.Google Scholar
Losada, I.J., Maza, M. & Lara, J.L. 2016 A new formulation for vegetation-induced damping under combined waves and currents. Coast. Engng 107, 113.CrossRefGoogle Scholar
Lovelock, C.E., et al. 2015 The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526 (7574), 559563.CrossRefGoogle ScholarPubMed
Madsen, P.A., Fuhrman, D.R. & Schäffer, H.A. 2008 On the solitary wave paradigm for tsunamis. J. Geophys. Res., 113, C12012.Google Scholar
Makris, C.V., Memos, C.D. & Krestenitis, Y.N. 2016 Numerical modeling of surf zone dynamics under weakly plunging breakers with SPH method. Ocean Model. 98 (1), 1235.CrossRefGoogle Scholar
Marois, D.E. & Mitsch, W.J. 2015 Coastal protection from tsunamis and cyclones provided by mangrove wetlands – a review. Intl J. Biodiversity Sci. 11 (1), 7183.CrossRefGoogle Scholar
Mazda, Y., Magi, M., Ikeda, Y., Kurokawa, T. & Asano, T. 2006 Wave reduction in a mangrove forest dominated by Sonneratia sp. Wetlands Ecol. Manage. 14, 365378.CrossRefGoogle Scholar
Mazda, Y., Magi, M., Kogo, M. & Hong, P.N. 1997 Mangroves as a coastal protection from waves in the Tong King delta, Vietnam. Mangroves Salt Marshes 1, 127135.CrossRefGoogle Scholar
McCowan, J. 1891 On the solitary wave. Lond. Edinb. Dubl. Phil. Mag. J. Sci. 5 (32), 4558.CrossRefGoogle Scholar
Mei, C.C., Chan, I.-C., Liu, P.L.-F., Huang, Z. & Zhang, W. 2011 Long waves through emergent coastal vegetation. J. Fluid Mech. 687, 461491.CrossRefGoogle Scholar
Mendez, F.J. & Losada, I.J. 2004 An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coast. Engng 51, 103118.CrossRefGoogle Scholar
Molteni, D. & Colagrossi, A. 1985 A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput. Phys. Commun. 180, 861872.CrossRefGoogle Scholar
Monaghan, J.J. & Lattanzio, J.C. 1985 A refined particle method for astrophysical problems. Astron. Astrophys. 149, 135143.Google Scholar
Mossa, M., Ben Meftah, M., De Serio, F. & Nepf, H.M. 2017 How vegetation in flows modifies the turbulent mixing and spreading of jets. Sci. Rep. 7, 6587.CrossRefGoogle ScholarPubMed
Mossa, M. & De Serio, F. 2016 Rethinking the process of detrainment: jets in obstructed natural flows. Sci. Rep. 6, 39103.CrossRefGoogle ScholarPubMed
Mossa, M., Goldshmid, R.H., Liberzon, D., Negretti, M.E., Sommeria, J., Termini, D. & De Serio, F. 2021 Quasi-geostrophic jet-like flow with obstructions. J. Fluid Mech. 921, A12.CrossRefGoogle Scholar
Munk, W.H. 1949 The solitary wave theory and its application to surf problems. Ann. N.Y. Acad. Sci. 51, 376462.CrossRefGoogle Scholar
Nepf, H.M. 1999 Turbulence and diffusion in flow through emergent vegetation. Water Resour. Res. 35 (2), 479489.CrossRefGoogle Scholar
Patel, D.M., Patel, V.M., Katriya, B. & Patel, K.A. 2014 Performance of mangrove in tsunami resistance. Intl J. Emerg. Technol. Res. 1 (3), 2932.Google Scholar
Russell, J.S. 1845 Report on waves. In Proceedings of the 14th Meeting of the British Association for the Advancement of Science, York, September 1844 (London 1845), Plates XLVII-LVII, pp. 90–311.Google Scholar
Shao, S. & Lo, E.Y.M. 2003 Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resour. 26 (7), 787800.CrossRefGoogle Scholar
Synolakis, C.E., Bernard, E.N., Titov, V.V., Kânoglu, U. & González, F.I. 2007 Standards, criteria and procedures for NOAA evaluation of tsunami numerical models. In NOAA Technical Memorandum, OAR PMEL, vol. 135, p. 55.Google Scholar
Tanino, Y. & Nepf, H.M. 2007 Lateral dispersion in random cylinder arrays at high Reynolds number. J. Fluid Mech. 600, 339371.CrossRefGoogle Scholar
Violeau, D. 2012 Fluid Mechanics and the SPH Method: Theory and Applications. Oxford University Press.CrossRefGoogle Scholar
Wang, Y., Yin, Z. & Liu, Y. 2022 Experimental investigation of wave attenuation and bulk drag coefficient in mangrove forest with complex root morphology. Appl. Ocean Res. 118, 102974.CrossRefGoogle Scholar
White, B.L. & Nepf, H.M. 2007 Shear instability and coherent structures in shallow flow adjacent to a porous layer. J. Fluid Mech. 593, 132.CrossRefGoogle Scholar
Yeh, H., Liu, P.L.-F., Briggs, M. & Synolakis, C.E. 1994 Propagation and amplification of tsunamis at coastal boundaries. Nature 37226, 353355.CrossRefGoogle Scholar
Zhang, H. & Nepf, X. 2022 Reconfiguration of and drag on marsh plants in combined waves and current. J. Fluids Struct. 110, 103539.CrossRefGoogle Scholar
Zhang, J., Zheng, J., Jeng, D.S. & Guo, Y. 2015 Numerical simulation of solitary-wave propagation over a steady current. ASCE J. Waterway Port Coastal Ocean Engng 141 (3), 04014041.CrossRefGoogle Scholar