Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T21:55:44.571Z Has data issue: false hasContentIssue false

Crow instability: nonlinear response to the linear optimal perturbation

Published online by Cambridge University Press:  19 April 2016

Holly G. Johnson*
Affiliation:
Fundamental and Experimental Aerodynamics Department, ONERA, 8 rue des Vertugadins, 92190 Meudon, France
Vincent Brion
Affiliation:
Fundamental and Experimental Aerodynamics Department, ONERA, 8 rue des Vertugadins, 92190 Meudon, France
Laurent Jacquin
Affiliation:
Fundamental and Experimental Aerodynamics Department, ONERA, 8 rue des Vertugadins, 92190 Meudon, France
*
Email address for correspondence: hollyjohnson90@gmail.com

Abstract

The potential for anticipated destruction of a counter-rotating vortex pair using the linear optimal perturbation of the Crow instability is assessed. Direct numerical simulation is used to study the development of the Crow instability and the subsequent evolution of the flow up to 30 characteristic times at a circulation-based Reynolds number of 1000. The conventional development of the instability leads to multiple contortions of the vortices including the linear growth of sinusoidal deformation, vortex linking and the formation of vortex rings. A new evolution stage is identified, succeeding this well-established sequence: the vortex rings undergo periodic oscillation. Two complete periods are simulated during which the vortical system is hardly altered, thereby demonstrating the extraordinary resilience of the vortices. The possibility of preventing these dynamics using the linear optimal perturbation of the Crow instability, the adjoint mode, is analysed. By appropriately setting the forcing amplitude, the lifetime of the vortices until their loss of coherence is reduced to approximately 13 characteristic times, which is less than half that of the natural Crow behaviour observed with infinitesimal forcing. The dynamics of the flow induced by the linear optimal perturbation that enable this result are connected to processes already known to efficiently alter vortical flows, in particular transient growth and four-vortex dynamics.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antkowiak, A. & Brancher, P. 2004 Transient energy growth for the Lamb–Oseen vortex. Phys. Fluids 16 (1), L1L4.CrossRefGoogle Scholar
Arms, R. J. & Hama, F. R. 1965 Localized-induction concept on a curved vortex and motion of an elliptic vortex ring. Phys. Fluids 8 (4), 553559.CrossRefGoogle Scholar
Brion, V., Sipp, D. & Jacquin, L. 2007 Optimal amplification of the Crow instability. Phys. Fluids 19 (11), 111703.CrossRefGoogle Scholar
Crow, S. C. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8 (12), 21722179.CrossRefGoogle Scholar
Dhanak, M. R. & De Bernardinis, B. 1981 The evolution of an elliptic vortex ring. J. Fluid Mech. 109, 189216.CrossRefGoogle Scholar
Fabre, D., Jacquin, L. & Loof, A. 2002 Optimal perturbations in a four-vortex aircraft wake in counter-rotating configuration. J. Fluid Mech. 451, 319328.CrossRefGoogle Scholar
Farrell, B. F. 1988 Optimal excitation of perturbations in viscous shear flow. Phys. Fluids 31 (8), 2093.CrossRefGoogle Scholar
Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G.2008 nek5000 Web page http://nek5000.mcs.anl.gov.Google Scholar
Fontane, J., Brancher, P. & Fabre, D. 2008 Stochastic forcing of the Lamb–Oseen vortex. J. Fluid Mech. 613, 233254.CrossRefGoogle Scholar
Hussain, F. & Duraisamy, K. 2011 Mechanics of viscous vortex reconnection. Phys. Fluids 23 (2), 021701.CrossRefGoogle Scholar
Hussain, F., Pradeep, D. S. & Stout, E. 2011 Nonlinear transient growth in a vortex column. J. Fluid Mech. 682, 304331.CrossRefGoogle Scholar
Leweke, T. & Williamson, C. H. K. 2011 Experiments on long-wavelength instability and reconnection of a vortex pair. Phys. Fluids 23 (2), 024101.CrossRefGoogle Scholar
Marshall, J. S. & Beninati, M. L. 2005 External turbulence interaction with a columnar vortex. J. Fluid Mech. 540, 221.CrossRefGoogle Scholar
Marshall, J. S., Brancher, P. & Giovannini, A. 2001 Interaction of unequal anti-parallel vortex tubes. J. Fluid Mech. 446, 229252.CrossRefGoogle Scholar
Melander, M. & Hussain, F. 1993 Coupling between a coherent structure and fine-scale turbulence. Phys. Rev. E 48 (4), 2669.CrossRefGoogle ScholarPubMed
Melander, M. V. & Hussain, F. 1989 Cross-linking of two antiparallel vortex tubes. Phys. Fluids 1 (4), 633636.CrossRefGoogle Scholar
Misaka, T., Holzpfel, F., Henningson, I., Gerz, T., Manhart, M. & Schwertfirm, F. 2012 Vortex bursting and tracer transport of a counter-rotating vortex pair. Phys. Fluids 24 (2), 025104.CrossRefGoogle Scholar
Miyazaki, T. & Hunt, J. C. R. 2000 Linear and nonlinear interactions between a columnar vortex and external turbulence. J. Fluid Mech. 402, 349378.CrossRefGoogle Scholar
Moriconi, L. 2000 Vortex reconnection as the dissipative scattering of dipoles. Phys. Rev. E 61 (3), 2640.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Pradeep, D. S. & Hussain, F. 2006 Transient growth of perturbations in a vortex column. J. Fluid Mech. 550, 251288.CrossRefGoogle Scholar
Saffman, P. G. 1990 A model of vortex reconnection. J. Fluid Mech. 212, 395402.CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.CrossRefGoogle Scholar
Shaeffer, N. & Le Dizès, S. 2010 Nonlinear dynamics of the elliptic instability. J. Fluid Mech. 646, 471480.CrossRefGoogle Scholar
Sipp, D.1999 Instabilités dans les écoulements tourbillonnaires. PhD thesis, Ecole Polytechnique, France.Google Scholar
Spalart, P. R. 1998 Airplane trailing vortices. Annu. Rev. Fluid Mech. 30 (1), 107138.CrossRefGoogle Scholar