Hostname: page-component-54dcc4c588-scsgl Total loading time: 0 Render date: 2025-09-29T11:18:44.632Z Has data issue: false hasContentIssue false

Critical wave speed governs heat transfer in buoyancy-driven turbulence under hybrid spatiotemporal modulation

Published online by Cambridge University Press:  29 September 2025

Le Zhang
Affiliation:
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China
Chao-Ben Zhao
Affiliation:
New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
Kai Leong Chong*
Affiliation:
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China Shanghai Institute of Aircraft Mechanics and Control, Zhangwu Road, Shanghai 200092, PR China
*
Corresponding author: Kai Leong Chong, klchong@shu.edu.cn

Abstract

Thermal forcing in natural environments, such as Earth’s surface, exhibits complex spatiotemporal variations due to daily and seasonal cycles. This motivates our study of Rayleigh–Bénard convection with hybrid spatiotemporal modulation at the thermal boundary, achieved by applying a travelling thermal wave to a bottom plate with modulated wavenumber $k$ and frequency $f$. At low frequencies, spatial modulation dominates, organising coherent thermal plumes. At high frequencies, the rapid propagation of the thermal wave smooths out the plumes, thereby reducing convective efficiency. We find that the emergence of the ‘smoothing’ effect is governed by the ratio between the wave speed ($c = f/k$) and the pseudo-speed of thermal diffusion, $c_{\textit{diff}} = 4\pi k/\sqrt {\textit{RaPr}}$, a scale-dependent measure of thermal damping. By comparing these speeds, we identify distinct regimes: (i) a spatially modulated-dominated regime ($c\lt c_{\textit{diff}}$), in which the slow movement of the boundary thermal wave allows coherent thermal plumes to follow the wave, maintaining coherence in both time and space; and (ii) a travelling-wave-dominated regime ($c\gt c_{\textit{diff}}$), where the fast-moving thermal wave disrupts the spatial coherence of thermal structures near the boundary layer. These findings establish a new framework for understanding the interplay of spatial and temporal modulation, advancing our knowledge of heat transfer in systems with complex boundary conditions.

Information

Type
JFM Rapids
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

These authors contributed equally to this work.

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.10.1103/RevModPhys.81.503CrossRefGoogle Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J E 35, 58.10.1140/epje/i2012-12058-1CrossRefGoogle ScholarPubMed
Chong, K.L., Yang, Y.-T., Huang, S.-D., Zhong, J.-Q., Stevens, R.J.A.M., Verzicco, R., Lohse, D. & Xia, K.-Q. 2017 Confined Rayleigh–Bénard, rotating Rayleigh–Bénard, and double diffusive convection: a unifying view on turbulent transport enhancement through coherent structure manipulation. Phys. Rev. Lett. 119, 064501.10.1103/PhysRevLett.119.064501CrossRefGoogle ScholarPubMed
Dong, W.H., Lin, Y.L., Zhang, M.H. & Huang, X.M. 2020 Footprint of tropical mesoscale convective system variability on stratospheric water vapor. Geophys. Res. Lett. 47 (5), e2019GL086320.10.1029/2019GL086320CrossRefGoogle Scholar
Du, Y.-B. & Tong, P. 1998 Enhanced heat transport in turbulent convection over a rough surface. Phys. Rev. Lett. 81, 987990.10.1103/PhysRevLett.81.987CrossRefGoogle Scholar
Glatzmaiers, G.A. & Roberts, P.H. 1995 A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 203209.10.1038/377203a0CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.10.1017/S0022112099007545CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2001 Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86, 3316.10.1103/PhysRevLett.86.3316CrossRefGoogle ScholarPubMed
Grossmann, S. & Lohse, D. 2011 Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids 23, 045108.10.1063/1.3582362CrossRefGoogle Scholar
Guo, X.-Q., Wang, B.-F., Wu, J.-Z., Chong, K.L. & Zhou, Q. 2022 Turbulent vertical convection under vertical vibration. Phys. Fluids 34, 055106.10.1063/5.0090250CrossRefGoogle Scholar
Hossain, M.Z. & Floryan, J.M. 2012 Heat transfer due to natural convection in a periodically heated slot. ASME J. Heat Transfer 135, 022503.10.1115/1.4007420CrossRefGoogle Scholar
Hossain, M.Z. & Floryan, J.M. 2015 Natural convection in a horizontal fluid layer periodically heated from above and below. Phys. Rev. E 92, 023015.10.1103/PhysRevE.92.023015CrossRefGoogle Scholar
Hossain, M.Z. & Floryan, J.M. 2023 Pumping using thermal waves. J. Fluid Mech. 966, A43.10.1017/jfm.2023.458CrossRefGoogle Scholar
Huang, S.-D., Kaczorowski, M., Ni, R. & Xia, K.-Q. 2013 Confinement-induced heat-transport enhancement in turbulent thermal convection. Phys. Rev. Lett. 111, 104501.10.1103/PhysRevLett.111.104501CrossRefGoogle ScholarPubMed
Koppers, A.A.P., Becker, T.W., Jackson, M.G., Konrad, K., Müller, R.D., Romanowicz, B., Steinberger, B. & Whittaker, J.M. 2021 Mantle plumes and their role in earth processes. Nat. Rev. Earth Environ. 2 (6), 382401.10.1038/s43017-021-00168-6CrossRefGoogle Scholar
Kraichnan, R.H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 13741389.10.1063/1.1706533CrossRefGoogle Scholar
Liu, H.-R., Chong, K.L., Ng, C.S., Verzicco, R. & Lohse, D. 2022 Enhancing heat transport in multiphase rayleigh–Bénard turbulence by changing the plate–liquid contact angles. J. Fluid Mech. 933, R1.10.1017/jfm.2021.1068CrossRefGoogle Scholar
Liu, S.-F., Lin, L.-H. & Sun, H.-B. 2021 Opto-thermophoretic manipulation. Acs Nano 15, 59255943.10.1021/acsnano.0c10427CrossRefGoogle ScholarPubMed
Lohse, D. & Shishkina, O. 2023 Ultimate turbulent thermal convection. Phys. Today 76 (11), 2632.10.1063/PT.3.5341CrossRefGoogle Scholar
Lohse, D. & Shishkina, O. 2024 Ultimate Rayleigh–Bénard turbulence. Rev. Mod. Phys. 96, 035001.10.1103/RevModPhys.96.035001CrossRefGoogle Scholar
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.10.1146/annurev.fluid.010908.165152CrossRefGoogle Scholar
Mao, W., Oron, A. & Alexeev, A. 2013 Fluid transport in thin liquid films using traveling thermal waves. Phys. Fluids 25, 072101.10.1063/1.4811829CrossRefGoogle Scholar
Ostilla-Monico, R., Yang, Y.-T., van der Poel, E.P., Lohse, D. & Verzicco, R. 2015 A multiple-resolution strategy for Direct Numerical Simulation of scalar turbulence. J. Comput. Phys. 301, 308321.10.1016/j.jcp.2015.08.031CrossRefGoogle Scholar
Pal, D. & Chakraborty, S. 2019 New regimes of dispersion in microfluidics as mediated by travelling temperature waves. Proc. R. Soc. Lond. A 475, 20190382.Google ScholarPubMed
Pelusi, F., Ascione, S., Sbragaglia, M. & Bernaschi, M. 2023 Analysis of the heat transfer fluctuations in the Rayleigh–Bénard convection of concentrated emulsions with finite-size droplets. Soft Matt. 19, 71927201.10.1039/D3SM00716BCrossRefGoogle ScholarPubMed
van der Poel, E.P., Ostilla-Mónico, R., Donners, J. & Verzicco, R. 2015 A pencil distributed finite difference code for strongly turbulent wall-bounded flows. Comput. Fluids 116, 1016.10.1016/j.compfluid.2015.04.007CrossRefGoogle Scholar
Reiter, P., Zhang, X., Stepanov, R. & Shishkina, O. 2021 Generation of zonal flows in convective systems by travelling thermal waves. J. Fluid Mech. 913, A13.10.1017/jfm.2020.1186CrossRefGoogle Scholar
Salort, J., Liot, O., Rusaouen, E., Seychelles, F., Tisserand, J.C., Creyssels, M., Castaing, B. & Chillà, F. 2014 Thermal boundary layer near roughnesses in turbulent Rayleigh–Bénard convection: flow structure and multistability. Phys. Fluids 26, 015112.10.1063/1.4862487CrossRefGoogle Scholar
Shen, Y., Tong, P. & Xia, K.-Q. 1996 Turbulent convection over rough surfaces. Phys. Rev. Lett. 76, 908911.10.1103/PhysRevLett.76.908CrossRefGoogle ScholarPubMed
Shevtsova, V., Ryzhkov, I.I., Melnikov, D.E., Gaponenko, Y.A. & Mialdun, A. 2010 Experimental and theoretical study of vibration-induced thermal convection in low gravity. J. Fluid Mech. 648, 5382.10.1017/S0022112009993442CrossRefGoogle Scholar
Shishkina, O. 2021 Rayleigh–Bénard convection: the container shape matters. Phys. Rev. Fluids 6, 090502.10.1103/PhysRevFluids.6.090502CrossRefGoogle Scholar
Shishkina, O. & Lohse, D. 2024 Ultimate regime of Rayleigh–Bénard turbulence: subregimes and their scaling relations for the Nusselt vs Rayleigh and Prandtl numbers. Phys. Rev. Lett. 133, 144001.10.1103/PhysRevLett.133.144001CrossRefGoogle ScholarPubMed
Shishkina, O. & Wagner, C. 2011 Modelling the influence of wall roughness on heat transfer in thermal convection. J. Fluid Mech. 686, 568582.10.1017/jfm.2011.348CrossRefGoogle Scholar
Stevens, R.J.A.M., van der Poel, E.P., Grossmann, S. & Lohse, D. 2013 The unifying theory of scaling in thermal convection: the updated prefactors. J. Fluid Mech. 730, 295308.10.1017/jfm.2013.298CrossRefGoogle Scholar
Urban, P., Králík, T., Musilová, V. & Skrbek, L. 2024 Modulated turbulent convection: a benchmark model for large scale natural flows driven by diurnal heating. Sci. Rep. 14, 15987.10.1038/s41598-024-66882-5CrossRefGoogle ScholarPubMed
Verzicco, R. & Orlandi, P. 1996 A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123, 402414.10.1006/jcph.1996.0033CrossRefGoogle Scholar
Voigt, A., Albern, N., Ceppi, P., Grise, K., Li, Y. & Medeiros, B. 2021 Clouds, radiation, and atmospheric circulation in the present-day climate and under climate change. WIREs Clim. Change 12, e694.10.1002/wcc.694CrossRefGoogle Scholar
Wang, B.-F., Zhou, Q. & Sun, C. 2020 a A vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement. Sci. Adv. 6, 17.Google ScholarPubMed
Wang, Z.-Q., Mathai, V. & Sun, C. 2019 Self-sustained biphasic catalytic particle turbulence. Nat. Commun. 10, 3333.10.1038/s41467-019-11221-wCrossRefGoogle ScholarPubMed
Wang, Z.-Q., Mathai, V. & Sun, C. 2020 b Experimental study of the heat transfer properties of self-sustained biphasic thermally driven turbulence. Intl J. Heat Mass Transfer 152, 119515.10.1016/j.ijheatmasstransfer.2020.119515CrossRefGoogle Scholar
Weinert, F.M. & Braun, D. 2008 Optically driven fluid flow along arbitrary microscale patterns using thermoviscous expansion. J. Appl. Phys. 104, 104701.10.1063/1.3026526CrossRefGoogle Scholar
Weinert, F.M., Kraus, J.A., Franosch, T. & Braun, D. 2008 Microscale fluid flow induced by thermoviscous expansion along a traveling wave. Phys. Rev. Lett. 100, 164501.10.1103/PhysRevLett.100.164501CrossRefGoogle ScholarPubMed
Wu, J.-Z., Dong, D.-L., Wang, B.-F., Dong, Y.-H. & Zhou, Q. 2022 a Tuning turbulent convection through rough element arrangement. J. Hydrodyn. 34 (2), 308314.10.1007/s42241-022-0020-9CrossRefGoogle Scholar
Wu, J.-Z., Wang, B.-F. & Zhou, Q. 2022 b Massive heat transfer enhancement of Rayleigh–Bénard turbulence over rough surfaces and under horizontal vibration. Acta Mechanica Sin. 38 (2), 321319.10.1007/s10409-021-09042-xCrossRefGoogle Scholar
Xia, K.-Q., Chong, K.L., Ding, G.-Y. & Zhang, L. 2025 Some fundamental issues in buoyancy-driven flows with implications for geophysical and astrophysical systems. Acta Mechanica Sin. 41 (1), 324287.10.1007/s10409-024-24287-xCrossRefGoogle Scholar
Xia, K.-Q., Huang, S.-D., Xie, Y.-C. & Zhang, L. 2023 Tuning heat transport via coherent structure manipulation: recent advances in thermal turbulence. Natl Sci. Rev. 10 (6), nwad012.10.1093/nsr/nwad012CrossRefGoogle ScholarPubMed
Yang, R., Chong, K.L., Wang, Q., Verzicco, R., Shishkina, O. & Lohse, D. 2020 Periodically modulated thermal convection. Phys. Rev. Lett. 125, 154502.10.1103/PhysRevLett.125.154502CrossRefGoogle ScholarPubMed
Zhang, Y.-J., Sun, C., Bao, Y. & Zhou, Q. 2018 How surface roughness reduces heat transport for small roughness heights in turbulent rayleigh–Bénard convection. J. Fluid Mech. 836, R2.10.1017/jfm.2017.786CrossRefGoogle Scholar
Zhao, C.-B., Wang, B.-F., Wu, J.-Z., Chong, K.-L. & Zhou, Q. 2022 a Suppression of flow reversals via manipulating corner rolls in plane Rayleigh–Bénard convection. J. Fluid Mech. 946, A44.10.1017/jfm.2022.602CrossRefGoogle Scholar
Zhao, C.-B., Zhang, Y.-Z., Wang, B.-F., Wu, J.-Z., Chong, K.L. & Zhou, Q. 2022 b Modulation of turbulent Rayleigh–Bénard convection under spatially harmonic heating. Phys. Rev. E 105, 055107.10.1103/PhysRevE.105.055107CrossRefGoogle ScholarPubMed
Supplementary material: File

Zhang et al. supplementary movie 1

Wavenumber ($k = 6$), Frequency ($f = 0.02$)
Download Zhang et al. supplementary movie 1(File)
File 5.8 MB
Supplementary material: File

Zhang et al. supplementary movie 2

Wavenumber ($k = 6$), Frequency ($f = 0.8$)
Download Zhang et al. supplementary movie 2(File)
File 5.4 MB
Supplementary material: File

Zhang et al. supplementary movie 3

Wavenumber ($k = 6$), Frequency ($f = 6$)
Download Zhang et al. supplementary movie 3(File)
File 4.9 MB
Supplementary material: File

Zhang et al. supplementary material 4

Zhang et al. supplementary material
Download Zhang et al. supplementary material 4(File)
File 3.1 KB