Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T06:27:11.560Z Has data issue: false hasContentIssue false

Complex-network analysis of high-frequency combustion instability in a model single-element rocket engine combustor

Published online by Cambridge University Press:  15 March 2023

Kazuki Kawano
Affiliation:
Department of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
Hiroshi Gotoda*
Affiliation:
Department of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
Yusuke Nabae
Affiliation:
Department of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
Yuya Ohmichi
Affiliation:
Japan Aerospace Exploration Agency, 7-44-1 Jindaiji-Higashimachi, Chofu-shi, Tokyo 182-8522, Japan
Shingo Matsuyama*
Affiliation:
Japan Aerospace Exploration Agency, 7-44-1 Jindaiji-Higashimachi, Chofu-shi, Tokyo 182-8522, Japan
*
Email addresses for correspondence: gotoda@rs.tus.ac.jp, matsuyama.shingo@jaxa.jp
Email addresses for correspondence: gotoda@rs.tus.ac.jp, matsuyama.shingo@jaxa.jp

Abstract

We study the spatio-temporal dynamics of high-frequency combustion instability in a model single-element rocket combustor using an acoustic energy flux-based spatial network. The acoustic energy source collapses by the formation of small communities with weak connection when the flame edge is attached to the injector rim. In contrast, large communities with strong connection are formed in the shear layer between the oxygen and hydrogen jets when the flame edge is detached from the injector rim, which has a significant impact on driving combustion instability. The switching between the attachment and detachment of the flame edge during combustion instability can be explained by the spectral-clustering-based transition network constructed from the pressure and flow velocity of the hydrogen jet at the injector exit, and the temperature near the injector rim.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aoki, C., Gotoda, H., Yoshida, S. & Tachibana, S. 2020 Dynamic behavior of intermittent combustion oscillations in a model rocket engine combustor. J. Appl. Phys. 127 (22), 224903.CrossRefGoogle Scholar
Aoki, K., Shimura, M., Naka, Y. & Tanahashi, M. 2017 Disturbance energy budget of turbulent swirling premixed flame in a cuboid combustor. Proc. Combust. Inst. 36 (3), 38093816.CrossRefGoogle Scholar
Armbruster, W., Hardi, J.S. & Oschwald, M. 2021 Flame-acoustic response measurements in a high-pressure, 42-injector, cryogenic rocket thrust chamber. Proc. Combust. Inst. 38 (4), 59635970.CrossRefGoogle Scholar
Barabási, A.-L. 2016 Network Science. Cambridge University Press.Google Scholar
Bishop, C.M. 2006 Pattern Recognition and Machine Learning. Springer.Google Scholar
Blondel, V.D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. 2008 Fast unfolding of communities in large networks. J. Stat. Mech. 2008 (10), P10008.CrossRefGoogle Scholar
Brear, M.J., Nicoud, F., Talei, M., Giauque, A. & Hawkes, E.R. 2012 Disturbance energy transport and sound production in gaseous combustion. J. Fluid Mech. 707, 5373.CrossRefGoogle Scholar
Fagiolo, G. 2007 Clustering in complex directed networks. Phys. Rev. E 76 (2), 026107.CrossRefGoogle ScholarPubMed
Godavarthi, V., Pawar, S.A., Unni, V.R., Sujith, R.I., Marwan, N. & Kurths, J. 2018 Coupled interaction between unsteady flame dynamics and acoustic field in a turbulent combustor. Chaos 28 (11), 113111.CrossRefGoogle Scholar
Gröning, S., Hardi, J.S., Suslov, D. & Oschwald, M. 2016 Injector-driven combustion instabilities in a hydrogen/oxygen rocket combustor. J. Propul. Power 32 (3), 560573.CrossRefGoogle Scholar
Guan, Y., Li, L.K.B., Ahn, B. & Kim, K.T. 2019 Chaos, synchronization, and desynchronization in a liquid-fueled diffusion-flame combustor with an intrinsic hydrodynamic mode. Chaos 29 (5), 053124.CrossRefGoogle Scholar
Guan, Y., Moon, K., Kim, K.T. & Li, L.K.B. 2022 Synchronization and chimeras in a network of four ring-coupled thermoacoustic oscillators. J. Fluid Mech. 938, A5.CrossRefGoogle Scholar
Guimerà, R. & Amaral, L.A.N. 2005 Functional cartography of complex metabolic networks. Nature 433, 895900.CrossRefGoogle ScholarPubMed
Hachijo, T., Masuda, S., Kurosaka, T. & Gotoda, H. 2019 Early detection of thermoacoustic combustion oscillations using a methodology combining statistical complexity and machine learning. Chaos 29 (10), 103123.CrossRefGoogle ScholarPubMed
Harvazinski, M.E., Huang, C., Sankaran, V., Feldman, T.W., Anderson, W.E., Merkle, C.L. & Talley, D.G. 2015 Coupling between hydrodynamics, acoustics, and heat release in a self-excited unstable combustor. Phys. Fluids 27 (4), 045102.CrossRefGoogle Scholar
Hashimoto, T., Shibuya, H., Gotoda, H., Ohmichi, Y. & Matsuyama, S. 2019 Spatiotemporal dynamics and early detection of thermoacoustic combustion instability in a model rocket combustor. Phys. Rev. E 99 (3), 032208.CrossRefGoogle Scholar
Holme, P., Min Park, S., Kim, B.J. & Edling, C.R. 2007 Korean university life in a network perspective: dynamics of a large affiliation network. Physica A 373, 821830.CrossRefGoogle Scholar
Huang, Y. & Yang, V. 2009 Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 35 (4), 293364.CrossRefGoogle Scholar
Iacobello, G., Ridolfi, L. & Scarsoglio, S. 2021 A review on turbulent and vortical flow analyses via complex networks. Physica A 563, 125476.CrossRefGoogle Scholar
Jeub, L.G.S., Bazzi, M., Jutla, I.S. & Mucha, P.J. 2011–2019 A generalized Louvain method for community detection implemented in MATLAB. http://netwiki.amath.unc.edu/GenLouvain.Google Scholar
Juniper, M.P. & Sujith, R.I. 2018 Sensitivity and nonlinearity of thermoacoustic oscillations. Annu. Rev. Fluid Mech. 50, 661689.CrossRefGoogle Scholar
Kasthuri, P., Krishnan, A., Gejji, R., Anderson, W., Marwan, N., Kurths, J. & Sujith, R.I. 2022 Investigation into the coherence of flame intensity oscillations in a model multi-element rocket combustor using complex networks. Phys. Fluids 34 (3), 034107.CrossRefGoogle Scholar
Kobayashi, T., Murayama, S., Hachijo, T. & Gotoda, H. 2019 Early detection of thermoacoustic combustion instability using a methodology combining complex networks and machine learning. Phys. Rev. Appl. 11 (6), 064034.CrossRefGoogle Scholar
Koizumi, H., Tsutsumi, S., Omata, N. & Shimizu, T. 2020 Thermoacoustic coupling mechanism of combustion instability in a continuously variable resonance combustor. AIAA Paper 2020-1071.CrossRefGoogle Scholar
Krishnan, A., Manikandan, R., Midhun, P.R., Reeja, K.V., Unni, V.R., Sujith, R.I., Marwan, N. & Kurths, J. 2019 a Mitigation of oscillatory instability in turbulent reactive flows: a novel approach using complex networks. Europhys. Lett. 128 (1), 14003.CrossRefGoogle Scholar
Krishnan, A., Sujith, R.I., Marwan, N. & Kurths, J. 2019 b On the emergence of large clusters of acoustic power sources at the onset of thermoacoustic instability in a turbulent combustor. J. Fluid Mech. 874, 455482.CrossRefGoogle Scholar
Krishnan, A., Sujith, R.I., Marwan, N. & Kurths, J. 2021 Suppression of thermoacoustic instability by targeting the hubs of the turbulent networks in a bluff body stabilized combustor. J. Fluid Mech. 916, A20.CrossRefGoogle Scholar
Lacasa, L., Luque, B., Ballesteros, F., Luque, J. & Nuño, J.C. 2008 From time series to complex networks: the visibility graph. Proc. Natl Acad. Sci. USA 105 (13), 49724975.CrossRefGoogle ScholarPubMed
Lacasa, L. & Toral, R. 2010 Description of stochastic and chaotic series using visibility graphs. Phys. Rev. E 82 (3), 036120.CrossRefGoogle ScholarPubMed
Lieuwen, T.C. 2012 Unsteady Combustor Physics. Cambridge University Press.CrossRefGoogle Scholar
Lieuwen, T.C. & Yang, V. 2005 Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling. American Institute of Aeronautics and Astronautics.Google Scholar
Lloyd, S. 1982 Least squares quantization in PCM. IEEE Trans. Inf. Theory 28 (2), 129137.CrossRefGoogle Scholar
Martin, J., Armbruster, W., Hardi, J.S., Suslov, D. & Oschwald, M. 2021 Experimental investigation of self-excited combustion instabilities in a LOX/LNG rocket combustor. J. Propul. Power 37 (6), 944951.CrossRefGoogle Scholar
Marwan, N., Romano, M.C., Thiel, M. & Kurths, J. 2007 Recurrence plots for the analysis of complex systems. Phys. Rep. 438 (5–6), 237329.CrossRefGoogle Scholar
Matsuyama, S., Hori, D., Shimizu, T., Tachibana, S., Yoshida, S. & Mizobuchi, Y. 2016 Large-eddy simulation of high-frequency combustion instability in a single-element atmospheric combustor. J. Propul. Power 32 (3), 628645.CrossRefGoogle Scholar
McCullough, M., Small, M., Stemler, T. & Iu, H.H.C. 2015 Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems. Chaos 25 (5), 053101.CrossRefGoogle ScholarPubMed
Meena, M.G. & Taira, K. 2021 Identifying vortical network connectors for turbulent flow modification. J. Fluid Mech. 915, A10.CrossRefGoogle Scholar
Morgan, C.J., Shipley, K.J. & Anderson, W.E. 2015 Comparative evaluation between experiment and simulation for a transverse instability. J. Propul. Power 31 (6), 16961706.CrossRefGoogle Scholar
Murayama, S., Kinugawa, H., Tokuda, I.T. & Gotoda, H. 2018 Characterization and detection of thermoacoustic combustion oscillations based on statistical complexity and complex-network theory. Phys. Rev. E 97 (2), 022223.CrossRefGoogle ScholarPubMed
Murugesan, M. & Sujith, R.I. 2015 Combustion noise is scale-free: transition from scale-free to order at the onset of thermoacoustic instability. J. Fluid Mech. 772, 225245.CrossRefGoogle Scholar
Newman, M.E.J. 2004 Analysis of weighted networks. Phys. Rev. E 70 (5), 056131.CrossRefGoogle ScholarPubMed
Newman, M.E.J. 2006 Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74 (3), 036104.CrossRefGoogle ScholarPubMed
Newman, M.E.J. 2010 Networks: An Introduction. Oxford University Press.CrossRefGoogle Scholar
O'Connor, J., Acharya, V. & Lieuwen, T. 2015 Transverse combustion instabilities: acoustic, fluid mechanic, and flame processes. Prog. Energy Combust. Sci. 49, 139.CrossRefGoogle Scholar
Okuno, Y., Small, M. & Gotoda, H. 2015 Dynamics of self-excited thermoacoustic instability in a combustion system: pseudo-periodic and high-dimensional nature. Chaos 25 (4), 043107.CrossRefGoogle Scholar
Reynolds, D. 2009 Gaussian Mixture Models. Springer.CrossRefGoogle Scholar
Rosso, O.A., Larrondo, H.A., Martin, M.T., Plastino, A. & Fuentes, M.A. 2007 Distinguishing noise from chaos. Phys. Rev. Lett. 99 (15), 154102.CrossRefGoogle ScholarPubMed
Schreiber, T. 2000 Measuring information transfer. Phys. Rev. Lett. 85 (2), 461464.CrossRefGoogle ScholarPubMed
Shima, S., Nakamura, K., Gotoda, H., Ohmichi, Y. & Matsuyama, S. 2021 Formation mechanism of high-frequency combustion oscillations in a model rocket engine combustor. Phys. Fluids 33 (6), 064108.CrossRefGoogle Scholar
Shinchi, Y., Takeda, N., Gotoda, H., Shoji, T. & Yoshida, S. 2021 Early detection of thermoacoustic combustion oscillations in staged multisector combustor. AIAA J. 59 (10), 40864093.CrossRefGoogle Scholar
Staniek, M. & Lehnertz, K. 2008 Symbolic transfer entropy. Phys. Rev. Lett. 100 (15), 158101.CrossRefGoogle ScholarPubMed
Sujith, R.I. & Pawar, S.A. 2021 Thermoacoustic Instability: A Complex Systems Perspective. Springer.CrossRefGoogle Scholar
Sujith, R.I. & Unni, V.R. 2020 Complex system approach to investigate and mitigate thermoacoustic instability in turbulent combustors. Phys. Fluids 32 (6), 061401.CrossRefGoogle Scholar
Sujith, R.I. & Unni, V.R. 2021 Dynamical systems and complex systems theory to study unsteady combustion. Proc. Combust. Inst. 38 (3), 34453462.CrossRefGoogle Scholar
Taira, K., Nair, A.G. & Brunton, S.L. 2016 Network structure of two-dimensional decaying isotropic turbulence. J. Fluid Mech. 795, R2.CrossRefGoogle Scholar
Urbano, A., Douasbin, Q., Selle, L., Staffelbach, G., Cuenot, B., Schmitt, T., Ducruix, S. & Candel, S. 2017 Study of flame response to transverse acoustic modes from the LES of a 42-injector rocket engine. Proc. Combust. Inst. 36 (2), 26332639.CrossRefGoogle Scholar
Urbano, A. & Selle, L. 2017 Driving and damping mechanisms for transverse combustion instabilities in liquid rocket engines. J. Fluid Mech. 820, R2.CrossRefGoogle Scholar
Urbano, A., Selle, L., Staffelbach, G., Cuenot, B., Schmitt, T., Ducruix, S. & Candel, S. 2016 Exploration of combustion instability triggering using large eddy simulation of a multiple injector liquid rocket engine. Combust. Flame 169, 129140.CrossRefGoogle Scholar
Vapnik, V.N. 1999 An overview of statistical learning theory. IEEE Trans. Neural Networks 10 (5), 988999.CrossRefGoogle ScholarPubMed
Von Luxburg, U. 2007 A tutorial on spectral clustering. Stat. Comput. 17 (4), 395416.CrossRefGoogle Scholar
Waxenegger-Wilfing, G., Sengupta, U., Martin, J., Armbruster, W., Hardi, J., Juniper, M. & Oschwald, M. 2021 Early detection of thermoacoustic instabilities in a cryogenic rocket thrust chamber using combustion noise features and machine learning. Chaos 31 (6), 063128.CrossRefGoogle Scholar
Zhang, J. & Small, M. 2006 Complex network from pseudoperiodic time series: topology versus dynamics. Phys. Rev. Lett. 96 (23), 238701.CrossRefGoogle ScholarPubMed
Zhang, J., Zhou, J., Tang, M., Guo, H., Small, M. & Zou, Y. 2017 Constructing ordinal partition transition networks from multivariate time series. Sci. Rep. 7, 7795.CrossRefGoogle ScholarPubMed