Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T03:44:04.403Z Has data issue: false hasContentIssue false

Competition and bistability of ordered undulations and undulation chaos in inclined layer convection

Published online by Cambridge University Press:  01 February 2008

KAREN E. DANIELS
Affiliation:
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 Department of Physics, North Carolina State University, Raleigh, NC 27695
OLIVER BRAUSCH
Affiliation:
Physikalisches Institut der Universität Bayreuth, 95440 Bayreuth, Germany
WERNER PESCH
Affiliation:
Physikalisches Institut der Universität Bayreuth, 95440 Bayreuth, Germany
EBERHARD BODENSCHATZ
Affiliation:
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany

Abstract

Experimental and theoretical investigations of undulation patterns in high-pressure inclined layer gas convection at a Prandtl number near unity are reported. Particular focus is given to the competition between the spatiotemporal chaotic state of undulation chaos and stationary patterns of ordered undulations. In experiments, a competition and bistability between the two states is observed, with ordered undulations most prevalent at higher Rayleigh number. The spectral pattern entropy, spatial correlation lengths and defect statistics are used to characterize the competing states. The experiments are complemented by a theoretical analysis of the Oberbeck–Boussinesq equations. The stability region of the ordered undulations as a function of their wave vectors and the Rayleigh number is obtained with Galerkin techniques. In addition, direct numerical simulations are used to investigate the spatiotemporal dynamics. In the simulations, both ordered undulations and undulation chaos were observed dependent on initial conditions. Experiment and theory are found to agree well.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andereck, C. D., Liu, S. S. & Swinney, H. L. 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155183.CrossRefGoogle Scholar
Blondeaux, P. 1990 Sand ripples under sea waves. Part 1. Ripple formation. J. Fluid Mech. 218, 117.CrossRefGoogle Scholar
Bodenschatz, E., Pesch, W. & Ahlers, G. 2000 Recent developments in Rayleigh-Bénard convection. Annu. Rev. Fluid Mech. 32, 709778.CrossRefGoogle Scholar
Bodenschatz, E., Pesch, W. & Kramer, L. 1988 Structure and dynamics of dislocations in anisotropic pattern-forming systems. Physica D 32 (1), 135145.Google Scholar
Bottin, S., Daviaud, F., Manneville, P. & Dauchot, O. 1998 Discontinuous transition to spatiotemporal intermittency in plane Couette flow. Europhys. Lett. 43, 171176.CrossRefGoogle Scholar
Brausch, O. 2001 Rayleigh–Bénard Konvektion in verschiedenen isotropen und anisotropen Systemen. PhD thesis, Universität Bayreuth.Google Scholar
de Bruyn, J. R., Bodenschatz, E., Morris, S. W., Trainoff, S. P., Hu, Y., Cannell, D. S. & Ahlers, G. 1996 Apparatus for the study of Rayleigh-Bénard convection in gases under pressure. Rev. Sci. Instrum. 67, 20432067.CrossRefGoogle Scholar
Cakmur, R. V., Egolf, D. A., Plapp, B. B. & Bodenschatz, E. 1997 Bistability and competition of spatiotemporal chaotic and fixed point attractors in Rayleigh-Bénard convection. Phys. Rev. Lett. 79, 18531856.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Clever, R. M. 1973 Finite amplitude longitudinal convection rolls in an inclined layer. Trans. ASME C: 95, 407408.CrossRefGoogle Scholar
Clever, R. M. & Busse, F. H. 1977 Instabilities of longitudinal convection rolls in an inclined layer. J. Fluid Mech. 81, 107125.CrossRefGoogle Scholar
Coullet, P., Elphick, C., Gil, L. & Lega, J. 1987 Topological defects of wave patterns. Phys. Rev. Lett. 59 (8), 884887.CrossRefGoogle ScholarPubMed
Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation out of equilibrium. Rev. Mod. Phys. 65, 8511112.CrossRefGoogle Scholar
Cross, M. C. & Hohenberg, P. C. 1994 Spatiotemporal chaos. Science 263, 15691570.CrossRefGoogle ScholarPubMed
Daniels, K. E. & Bodenschatz, E. 2002 Defect turbulence in inclined layer convection. Phys. Rev. Lett. 88, 034501.CrossRefGoogle ScholarPubMed
Daniels, K. E. & Bodenschatz, E. 2003 Statistics of defect motion in spatiotemporal chaos in inclined layer convection. Chaos 13, 55.CrossRefGoogle ScholarPubMed
Daniels, K. E., Plapp, B. B. & Bodenschatz, E. 2000 Pattern formation in inclined layer convection. Phys. Rev. Lett. 84, 53205323.CrossRefGoogle ScholarPubMed
Decker, W., Pesch, W. & Weber, A. 1994 Spiral defect chaos in Rayleigh-Bénard convection. Phys. Rev. Lett. 73, 648651.CrossRefGoogle ScholarPubMed
Echebarria, B. & Riecke, H. 2000 Stability of oscillating hexagons in rotating convection. Physica D 143, 187204.Google Scholar
Egolf, D. A., Melnikov, I. V. & Bodenschatz, E. 1998 Importance of local pattern properties in spiral defect chaos. Phys. Rev. Lett. 80, 32283231.CrossRefGoogle Scholar
Egolf, D. A., Melnikov, I. V., Pesch, W. & Ecke, R. E. 2000 Mechanisms of extensive spatiotemporal chaos in Rayleigh-Bénard convection. Nature 404, 733736.CrossRefGoogle ScholarPubMed
Gluckman, B. J., Marcq, P., Bridger, J. & Gollub, J. P. 1993 Time averaging of chaotic spatiotemporal wave patterns. Phys. Rev. Lett. 71, 20342037.CrossRefGoogle ScholarPubMed
Gollub, J. P. 1994 Spirals and chaos. Nature 367, 318.CrossRefGoogle Scholar
Gollub, J. P. & Cross, M. C. 2000 Nonlinear dynamics – chaos in space and time. Nature 404, 710711.CrossRefGoogle Scholar
Hansen, J. L., Hecke, M., VanEllegaard, C. Ellegaard, C., Andersen, K. H., Bohr, T., Haaning, A. & Sams, T. 2001 Stability balloon for two-dimensional vortex ripple patterns. Phys. Rev. Lett. 87, 204301.CrossRefGoogle ScholarPubMed
Hart, J. E. 1971 a Stability of the flow in a differentially heated inclined box. J. Fluid Mech. 47, 547576.CrossRefGoogle Scholar
Hart, J. E. 1971 b Transition to a wavy vortex regime in convective flow between inclined plates. J. Fluid Mech. 48, 265271.CrossRefGoogle Scholar
Kelly, R. E. 1977 The onset and development of Rayleigh-Bénard convection in shear flows: A review. In Physicochemical Hydrodynamics (ed. Spalding, D. B.), pp. 6579. Advanced Publications.Google Scholar
Kelly, R. E. 1994 The onset and development of thermal convection in fully developed shear flows. Adv. Appl. Mech. 31, 35.CrossRefGoogle Scholar
Kramer, L. & Pesch, W. 1995 Convection instabilities in nematic liquid-crystals. Annu. Rev. Fluid Mech. 27, 515541.CrossRefGoogle Scholar
Kurt, E., Busse, F. H. & Pesch, W. 2004 Hydromagnetic convection in a rotating annulus with an azimuthal magnetic field. Theore. Comput. Fluid Dyn. 18 (2–4), 251263.CrossRefGoogle Scholar
Madruga, S., Riecke, H. & Pesch, W. 2006 Defect chaos and bursts: Hexagonal rotating convection and the complex ginzburg-landau equation. Phys. Rev. Lett. 96 (7), 074501.CrossRefGoogle ScholarPubMed
Morris, S. W., Bodenschatz, E., Cannell, D. S. & Ahlers, G. 1993 Spiral defect chaos in large aspect ratio Rayleigh-Bénard convection. Phys. Rev. Lett. 71, 20262029.CrossRefGoogle ScholarPubMed
Müller, H. W., Lücke, M. & Kamps, M. 1992 Transveral convection patterns in horizontal shear-flow. Phys. Rev. A 45, 37143726.CrossRefGoogle Scholar
Neufeld, M. & Friedrich, R. 1994 Pattern formation in rotating Bénard convection. International J. Bifurcation Chaos Appli. Sci. and Engng 4, 11551163.CrossRefGoogle Scholar
Ning, L., Hu, Y., Ecke, R. E. & Ahlers, G. 1993 Spatial and temporal averages in chaotic patterns. Phys. Rev. Lett. 71, 22162219.CrossRefGoogle ScholarPubMed
Paul, M. R., Chiam, K. H., Cross, M. C. & Fischer, P. F. 2004 Rayleigh-Bénard convection in large-aspect-ratio domains. Phys. Rev. Lett. 93, 064503.CrossRefGoogle ScholarPubMed
Pesch, W. 1996 Complex spatiotemporal convection patterns. Chaos 6, 348357.CrossRefGoogle ScholarPubMed
Ramazza, P. L., Residori, S., Giacomelli, G. & Arecchi, F. T. 1992 Statistics of topological defects in linear and nonlinear optics. Europhys. Lett. 19, 475–80.CrossRefGoogle Scholar
Rasenat, S., Steinberg, V. & Rehberg, I. 1990 Experimental studies of defect dynamics and interaction in electrohydrodynamic convection. Phys. Rev. A 42 (10), 59986008.CrossRefGoogle ScholarPubMed
Rehberg, I., Rasenat, S. & Steinberg, V. 1989 Traveling waves and defect-initiated turbulence in electroconvecting nematics. Phys. Rev. Lett. 62, 756–9.CrossRefGoogle ScholarPubMed
Ruth, D. W. 1980 On the transition to transverse rolls in inclined infinite fluid layers-steady solutions. Intl J. Heat Mass Transfer 23, 733737.CrossRefGoogle Scholar
Ruth, D. W., Raithby, G. D. & Hollands, K. G. T. 1980 On the secondary instability in inclined air layers. J. Fluid Mech. 96, 481492.CrossRefGoogle Scholar
Tagg, R. 1994 The Couette-Taylor problem. Nonlinear Scie. Today 4, 124.Google Scholar
Trainoff, S. P. & Cannell, D. S. 2002 Physical optics treatment of the shadowgraph. Phys. Fluids 14, 13401363.CrossRefGoogle Scholar
Walter, Th., Pesch, W. & Bodenschatz, E. 2004 Dislocation dynamics in Rayleigh-Benard convection. Chaos 14 (3), 933939.CrossRefGoogle ScholarPubMed
Young, Y. N. & Riecke, H. 2003 Penta-hepta defect chaos in a model for rotating hexagonal convection. Phys. Rev. Lett. 90, 134502.CrossRefGoogle Scholar
Yu, C. H., Chang, M. Y. & Lin, T. F. 1997 Structures of moving transverse and mixed rolls in mixed convection of air in a horizontal plane channel. Intl J. Heat Mass Transfer 40 (2), 333–46.CrossRefGoogle Scholar