Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T16:23:04.308Z Has data issue: false hasContentIssue false

Chaotic mixing in crystalline granular media

Published online by Cambridge University Press:  24 May 2019

Régis Turuban
Affiliation:
Géosciences Rennes, UMR 6118, Université de Rennes 1, CNRS, 35000 Rennes, France
Daniel R. Lester*
Affiliation:
School of Engineering, RMIT University, 3000 Melbourne, Victoria, Australia
Joris Heyman
Affiliation:
Géosciences Rennes, UMR 6118, Université de Rennes 1, CNRS, 35000 Rennes, France
Tanguy Le Borgne
Affiliation:
Géosciences Rennes, UMR 6118, Université de Rennes 1, CNRS, 35000 Rennes, France
Yves Méheust
Affiliation:
Géosciences Rennes, UMR 6118, Université de Rennes 1, CNRS, 35000 Rennes, France
*
Email address for correspondence: daniel.lester@rmit.edu.au

Abstract

We study the Lagrangian kinematics of steady three-dimensional Stokes flow over simple cubic (SC) and body-centred cubic (BCC) lattices of close-packed spheres, and uncover the mechanisms governing chaotic mixing in these crystalline structures. Due to the cusp-shaped sphere contacts, the topology of the skin friction field is fundamentally different to that of continuous (non-granular) media, such as open pore networks, with significant implications for fluid mixing. Weak symmetry breaking of the flow orientation with respect to the lattice symmetries imparts a transition from regular to strong chaotic mixing in the BCC lattice, whereas the SC lattice only exhibits weak mixing. Whilst the SC and BCC lattices posses the same symmetry point group, these differences are explained in terms of their space groups. This insight is used to develop accurate predictions of the Lyapunov exponent distribution over the parameter space of mean flow orientation. These results point to a general theory of mixing and dispersion based upon the inherent symmetries of arbitrary crystalline structures.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashcroft, N. W. & Mermin, N. D. 1976 Solid state physics (Holt, Rinehart and Winston, New York, 1976). Saunders College Publishing.Google Scholar
Avril, A., Hornung, C. H., Urban, A., Fraser, D., Horne, M., Veder, J.-P., Tsanaktsidis, J., Rodopoulos, T., Henry, C. & Gunasegaram, D. R. 2017 Continuous flow hydrogenations using novel catalytic static mixers inside a tubular reactor. React. Chem. Eng. 2, 180188.Google Scholar
Battiato, I., Tartakovsky, D. M., Tartakovsky, A. M. & Scheibe, T. 2009 On breakdown of macroscopic models of mixing-controlled heterogeneous reactions in porous media. Adv. Water Resour. 32, 16641673.Google Scholar
Bijeljic, B., Mostaghimi, P. & Blunt, M. J. 2011 Signature of non-Fickian solute transport in complex heterogeneous porous media. Phys. Rev. Lett. 107, 204502.Google Scholar
Brøns, M. & Hartnack, J. N. 1999 Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries. Phys. Fluids 11 (2), 314324.Google Scholar
Davis, A. M. J., O’Neill, M. E., Dorrepaal, J. M. & Ranger, K. B. 1976 Separation from the surface of two equal spheres in Stokes flow. J. Fluid Mech. 77 (4), 625644.Google Scholar
De Anna, P., Jimenez-Martinez, J., Tabuteau, H., Turuban, R., Borgne, T. L., Derrien, M. & Meheust, Y. 2014 Mixing and reaction kinetics in porous media : an experimental pore scale quantification. Environ. Sci. Technol. 48 (1), 508516.Google Scholar
deMello, A. J. 2006 Control and detection of chemical reactions in microfluidic systems. Nature 442 (7101), 394402.Google Scholar
Dentz, M., LeBorgne, T., Englert, A. & Bijeljic, B. 2011 Mixing, spreading and reaction in heterogeneous media: a brief review. J. Contam. Hydrol. 120–121, 117.Google Scholar
Fair, J. D. & Kormos, C. M. 2008 Flash column chromatograms estimated from thin-layer chromatography data. J. Chromatogr. A 1211 (1–2), 4954.Google Scholar
Franjione, J. G., Leong, C-W. & Ottino, J. M. 1989 Symmetries within chaos: a route to effective mixing. Phys. Fluids A 1 (11), 17721783.Google Scholar
Haller, G. & Mezic, I. 1998 Reduction of three-dimensional, volume-preserving flows with symmetry. Nonlinearity 11 (2), 319339.Google Scholar
Haller, G. & Poje, A. C. 1998 Finite time transport in aperiodic flows. Physica D 119 (3–4), 352380.Google Scholar
Holzner, M., Morales, V. L., Willmann, M. & Dentz, M. 2015 Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow. Phys. Rev. E 92 (1), 013015.Google Scholar
Jones, S. W. & Young, W. R. 1994 Shear dispersion and anomalous diffusion by chaotic advection. J. Fluid Mech. 280, 149172.10.1017/S0022112094002880Google Scholar
Kang, P. K., Anna, P., Nunes, J. P., Bijeljic, B., Blunt, M. J. & Juanes, R. 2014 Pore-scale intermittent velocity structure underpinning anomalous transport through 3-D porous media. Geophys. Res. Lett. 41 (17), 61846190.Google Scholar
Kim, S. & Karrila, S. J. 1991 Chapter 1 – microhydrodynamic phenomena. In Microhydrodynamics, pp. 112. Butterworth-Heinemann.Google Scholar
Lester, D. R., Trefry, M. G. & Metcalfe, G. 2016 Chaotic advection at the pore scale: mechanisms, upscaling and implications for macroscopic transport. Adv. Water Resour. 97, 175192.Google Scholar
Lester, D. R., Dentz, M., Borgne, T. L. & Barros, F. P. J. D. 2018 Fluid deformation in random steady three-dimensional flow. J. Fluid Mech. 855, 770803.Google Scholar
Lester, D. R., Dentz, M. & Le Borgne, T. 2016 Chaotic mixing in three-dimensional porous media. J. Fluid Mech. 803, 144174.Google Scholar
Lester, D. R., Metcalfe, G. & Trefry, M. G. 2013 Is chaotic advection inherent to porous media flow? Phys. Rev. Lett. 111, 174101.Google Scholar
Lester, D. R., Metcalfe, G. & Trefry, M. G. 2014 Anomalous transport and chaotic advection in homogeneous porous media. Phys. Rev. E 90, 063012.Google Scholar
MacKay, R. S. 2001 Complicated dynamics from simple topological hypotheses. Philosophical Transactions: Mathematical, Physical and Engineering Sciences 359 (1784), 14791496.10.1098/rsta.2001.0849Google Scholar
Meijer, H. E. H., Singh, M. K. & Anderson, P. D. 2012 On the performance of static mixers: a quantitative comparison. Prog. Polym. Sci. 37 (10), 13331349.Google Scholar
Mezić, I. & Wiggins, S. 1994 On the integrability and perturbations of three-dimensional fluid flows with symmetry. J. Nonlinear Sci. 4, 157194.Google Scholar
Mezić, I., Wiggins, S. & Bentz, D. 1999 Residence-time distributions for chaotic flows in pipes. Chaos 9 (1), 173182.10.1063/1.166388Google Scholar
Moffatt, H. K. 1964 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18 (1), 118.Google Scholar
Ottino, J. M. 1989 The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press.Google Scholar
Soulvaiotis, A., Jana, S. C. & Ottino, J. M. 1995 Potentialities and limitations of mixing simulations. AIChE J. 41 (7), 16051621.Google Scholar
Surana, A., Grunberg, O. & Haller, G. 2006 Exact theory of three-dimensional flow separation. Part 1. Steady separation. J. Fluid Mech. 564, 57103.10.1017/S0022112006001200Google Scholar
Szabó, K. G. & Tél, T. 1989 On the symmetry-breaking bifurcation of chaotic attractors. J. Stat. Phys. 54 (3), 925948.10.1007/BF01019782Google Scholar
Tartakovsky, A. M., Tartakovsky, D. M. & Meakin, P. 2008 Stochastic Langevin model for flow and transport in porous media. Phys. Rev. Lett. 101 (4), 044502.Google Scholar
Turuban, R., Lester, D. R., Borgne, T. L. & Méheust, Y. 2018 Space-group symmetries generate chaotic fluid advection in crystalline granular media. Phys. Rev. Lett. 120, 024501.Google Scholar
Yannacopoulos, A. N., Mezić, I., Rowlands, G. & King, G. P. 1998 Eulerian diagnostics for Lagrangian chaos in three-dimensional Navier–Stokes flows. Phys. Rev. E 57, 482490.Google Scholar
Ye, Y., Chiogna, G., Cirpka, O. A., Grathwohl, P. & Rolle, M. 2015 Experimental evidence of helical flow in porous media. Phys. Rev. Lett. 115, 194502.Google Scholar

Luruban Supplementary Movie 1

Animation of the evolution of the inset in Figure 1(b) with downstream distance. This inset shows the cross-section (black line) of a material surface resulting from the continuous injection of a material line given by the red circle.

Download Luruban Supplementary Movie 1(Video)
Video 1.4 MB

Turuban Supplementary Movie 2

3D Animation of Figure 6(a), depicting a 3D view of the skin friction field, streamlines, stable and unstable manifolds associated with a sphere in the BCC lattice.

Download Turuban Supplementary Movie 2(Video)
Video 3.6 MB

Turuban Supplementary Movie 3

3D animation of Figure 9(c), depicting a smooth heteroclinic connection for the BCC lattice with $(\theta_{\text{f}}, \phi_{\text{f}}) = (3\pi/20, 0)$.

Download Turuban Supplementary Movie 3(Video)
Video 403.9 KB

Turuban Supplementary Movie 4

3D animation of Figure 9(d), depicting a transverse heteroclinic intersection for the BCC lattice with $(\theta_{\text{f}}, \phi_{\text{f}}) = (\pi/20, 0)$.

Download Turuban Supplementary Movie 4(Video)
Video 718.3 KB