Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T15:04:50.931Z Has data issue: false hasContentIssue false

Cavity collapse near slot geometries

Published online by Cambridge University Press:  02 September 2020

Elijah D. Andrews*
Affiliation:
Faculty of Engineering and Physical Sciences, University of Southampton, SouthamptonSO17 1BJ, UK
David Fernández Rivas
Affiliation:
Mesoscale Chemical Systems Group, MESA+ Institute, TechMed Centre and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AEEnschede, The Netherlands
Ivo R. Peters
Affiliation:
Faculty of Engineering and Physical Sciences, University of Southampton, SouthamptonSO17 1BJ, UK
*
Email address for correspondence: e.d.andrews@soton.ac.uk

Abstract

The collapse of a gas or vapour bubble near a solid boundary produces a jet directed towards the boundary. High surface pressure and shear stress induced by this jet can damage, or clean, the surface. More complex geometries will result in changes in collapse behaviour, in particular the direction of the jet. The majority of prior research has focused on simple flat boundaries or cases with limited complexity. There is currently very little known about how complex geometries affect bubble collapse. We numerically and experimentally investigate how a slot in a flat boundary affects the jet direction for a single bubble. We use a boundary element model to predict how the jet direction depends on key geometric parameters and show that the results collapse to a single curve when the parameters are normalised appropriately. We then experimentally validate the predictions using laser-induced cavitation and compare the experimental results to the predicted dependencies. This research reveals a tendency for the jet to be directed away from a slot and shows that the jet direction is independent of slot height for slots of sufficient height.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benjamin, T. B. & Ellis, A. T. 1966 The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond. A 260 (1110), 221240.Google Scholar
Blake, J. R. 1983 The Kelvin impulse: applications to bubble dynamics. In Eighth Australasian Fluid Mechanics Conference (ed. Antonia, R. A.), vol. 2, pp. 10B.110B.4.Google Scholar
Brebbia, C. A. & Dominguez, J. 2001 Boundary Elements: An Introductory Course. WIT.Google Scholar
Brujan, E.-A., Noda, T., Ishigami, A., Ogasawara, T. & Takahira, H. 2018 Dynamics of laser-induced cavitation bubbles near two perpendicular rigid walls. J. Fluid Mech. 841, 2849.CrossRefGoogle Scholar
Brujan, E.-A., Takahira, H. & Ogasawara, T. 2019 Planar jets in collapsing cavitation bubbles. Exp. Therm. Fluid Sci. 101, 4861.CrossRefGoogle Scholar
Canchi, S., Kelly, K., Hong, Y., King, M. A., Subhash, G. & Sarntinoranont, M. 2017 Controlled single bubble cavitation collapse results in jet-induced injury in brain tissue. J. Mech. Behav. Biomed. Mater. 74, 261273.CrossRefGoogle ScholarPubMed
Cui, P., Zhang, A. M., Wang, S. & Khoo, B. C. 2018 Ice breaking by a collapsing bubble. J. Fluid Mech. 841, 287309.CrossRefGoogle Scholar
Dijkink, R., Le Gac, S., Nijhuis, E., van den Berg, A., Vermes, I., Poot, A. & Ohl, C. D. 2008 Controlled cavitation-cell interaction: trans-membrane transport and viability studies. Phys. Med. Biol. 53 (2), 375390.CrossRefGoogle ScholarPubMed
Dijkink, R. & Ohl, C. D. 2008 Measurement of cavitation induced wall shear stress. Appl. Phys. Lett. 93 (25), 254107.CrossRefGoogle Scholar
Fernandez Rivas, D., Betjes, J., Verhaagen, B., Bouwhuis, W., Bor, T. C., Lohse, D. & Gardeniers, H. J. G. E. 2013 Erosion evolution in mono-crystalline silicon surfaces caused by acoustic cavitation bubbles. J. Appl. Phys. 113 (6), 064902.CrossRefGoogle Scholar
Gonzalez-Avila, S. R., van Blokland, A. C., Zeng, Q. & Ohl, C.-D. 2020 Jetting and shear stress enhancement from cavitation bubbles collapsing in a narrow gap. J. Fluid Mech. 884, A23.CrossRefGoogle Scholar
Han, B., Zhu, R., Guo, Z., Liu, L. & Ni, X.-W. 2018 Control of the liquid jet formation through the symmetric and asymmetric collapse of a single bubble generated between two parallel solid plates. Eur. J. Mech. B/Fluids 72, 114122.CrossRefGoogle Scholar
Harris, P. J. 1996 The numerical determination of the Kelvin impulse of a bubble close to a submerged rigid structure. Comput. Meth. Appl. Mech. Engng 130 (3–4), 195202.CrossRefGoogle Scholar
Karri, B., Avila, S. R. G., Loke, Y. C., O'Shea, S. J., Klaseboer, E., Khoo, B. C. & Ohl, C. D. 2012 High-speed jetting and spray formation from bubble collapse. Phys. Rev. E 85 (1), 015303.CrossRefGoogle ScholarPubMed
Kim, D. & Kim, D. 2020 Underwater bubble collapse on a ridge-patterned structure. Phys. Fluids 32 (5), 053312.CrossRefGoogle Scholar
Koukouvinis, P., Strotos, G., Zeng, Q., Gonzalez-Avila, S. R., Theodorakakos, A., Gavaises, M. & Ohl, C. D. 2018 Parametric investigations of the induced shear stress by a laser-generated bubble. Langmuir 34 (22), 64286442.CrossRefGoogle ScholarPubMed
Kucera, A. & Blake, J. R. 1990 Approximate methods for modelling cavitation bubbles near boundaries. Bull. Austral. Math. Soc. 41 (1), 144.CrossRefGoogle Scholar
Kumar, P. & Saini, R. P. 2010 Study of cavitation in hydro turbines – a review. Renewable Sustainable Energy Rev. 14 (1), 374383.CrossRefGoogle Scholar
Lauterborn, W. 1972 High-speed photography of laser-induced breakdown in liquids. Appl. Phys. Lett. 21 (1), 2729.CrossRefGoogle Scholar
Li, S., Han, R., Zhang, A. M. & Wang, Q. X. 2016 Analysis of pressure field generated by a collapsing bubble. Ocean Engng 117, 2238.CrossRefGoogle Scholar
Luo, X. W., Ji, B. & Tsujimoto, Y. 2016 A review of cavitation in hydraulic machinery. J. Hydrodyn. 28 (3), 335358.CrossRefGoogle Scholar
Molefe, L. & Peters, I. R. 2019 Jet direction in bubble collapse within rectangular and triangular channels. Phys. Rev. E 100 (6), 063105.CrossRefGoogle ScholarPubMed
Noack, J. & Vogel, A. 1999 Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density. IEEE J. Quantum Electron. 35 (8), 11561167.CrossRefGoogle Scholar
Oyarte Gálvez, L., Fraters, A., Offerhaus, H. L., Michel, V., Hunter, I. W. & Fernández Rivas, D. 2020 Microfluidics control the ballistic energy of thermocavitation liquid jets for needle-free injections. J. Appl. Phys. 127 (10), 104901.CrossRefGoogle Scholar
Palanker, D., Vankov, A. & Miller, J. 2002 Effect of the probe geometry on dynamics of cavitation. Proc. SPIE Intl Soc. Opt. Engng 4617, 112117.Google Scholar
Pan, Z., Kiyama, A., Tagawa, Y., Daily, D. J., Thomson, S. L., Hurd, R. & Truscott, T. T. 2017 Cavitation onset caused by acceleration. Proc. Natl Acad. Sci. USA 114 (32), 84708474.CrossRefGoogle ScholarPubMed
Plesset, M. S. & Chapman, R. B. 1971 Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47 (2), 283290.CrossRefGoogle Scholar
Reuter, F., Lauterborn, S., Mettin, R. & Lauterborn, W. 2017 Membrane cleaning with ultrasonically driven bubbles. Ultrason. Sonochem. 37, 542560.CrossRefGoogle ScholarPubMed
Shimu, Q. I. N., Yang, Y., Junqi, Q. I. N. & Changchun, D. I. 2019 Research on the cavitation in the snapping shrimp: a review. IOP Conference Series: Earth and Environmental Science 310 (5), 052057.CrossRefGoogle Scholar
Sinibaldi, G., Occhicone, A., Alves Pereira, F., Caprini, D., Marino, L., Michelotti, F. & Casciola, C. M. 2019 Laser induced cavitation: plasma generation and breakdown shockwave. Phys. Fluids 31 (10), 103302.CrossRefGoogle Scholar
Sreedhar, B. K., Albert, S. K. & Pandit, A. B. 2017 Cavitation damage: theory and measurements – a review. Wear 372–373, 177196.CrossRefGoogle Scholar
Stricker, L., Dollet, B., Fernández Rivas, D. & Lohse, D. 2013 Interacting bubble clouds and their sonochemical production. J. Acoust. Soc. Am. 134 (3), 18541862.CrossRefGoogle ScholarPubMed
Supponen, O., Obreschkow, D., Tinguely, M., Kobel, P., Dorsaz, N. & Farhat, M. 2016 Scaling laws for jets of single cavitation bubbles. J. Fluid Mech. 802, 263293.CrossRefGoogle Scholar
Tagawa, Y. & Peters, I. R. 2018 Bubble collapse and jet formation in corner geometries. Phys. Rev. Fluids 3 (8), 81601.CrossRefGoogle Scholar
van Terwisga, T., van Wijngaarden, E., Bosschers, J. & Kuiper, G. 2007 Achievements and challenges in cavitation research on ship propellers. Intl Shipbuild. Prog. 54, 165187.Google Scholar
Tomita, Y., Robinson, P. B., Tong, R. P. & Blake, J. R. 2002 Growth and collapse of cavitation bubbles near a curved rigid boundary. J. Fluid Mech. 466, 259283.CrossRefGoogle Scholar
Verhaagen, B. & Fernández Rivas, D. 2016 Measuring cavitation and its cleaning effect. Ultrason. Sonochem. 29, 619628.CrossRefGoogle ScholarPubMed
Verhaagen, B., Zanderink, T. & Fernández Rivas, D. 2016 Ultrasonic cleaning of 3D printed objects and cleaning challenge devices. Appl. Acoust. 103, 172181.CrossRefGoogle Scholar
Versluis, M., Schmitz, B., Von der Heydt, A. & Lohse, D. 2000 How snapping shrimp snap: through cavitating bubbles. Science 289 (5487), 21142117.CrossRefGoogle ScholarPubMed
Wang, Q., Mahmud, M., Cui, J., Smith, W. R. & Walmsley, A. D. 2020 Numerical investigation of bubble dynamics at a corner. Phys. Fluids 32 (5), 53306.Google Scholar
van Wijngaarden, L. 2016 Mechanics of collapsing cavitation bubbles. Ultrason. Sonochem. 29, 524527.CrossRefGoogle ScholarPubMed
Zhang, S., Zhang, A. M., Wang, S. P. & Cui, J. 2017 Dynamic characteristics of large scale spark bubbles close to different boundaries. Phys. Fluids 29 (9), 092107.CrossRefGoogle Scholar
Zwaan, E., Le Gac, S., Tsuji, K. & Ohl, C.-D. 2007 Controlled cavitation in microfluidic systems. Phys. Rev. Lett. 98 (25), 254501.CrossRefGoogle ScholarPubMed

Andrews et al. supplementary movie 1

The collapse of a bubble near a slot with with width $W = 2.2$ mm and $H = 2.7$ mm with the bubble positioned at a vertical distance $Y = 2.29$ mm and horizontal distance $X = -2.03$ mm. The jet angle is measured to be $\theta = -0.099$ radians ($-5.7$ degrees). The movie was recorded at 100 000 frames per second and is played back at 24 frames per second. The frames used in figure 2 of the paper are from this movie.

Download Andrews et al. supplementary movie 1(Video)
Video 1.3 MB

Andrews et al. supplementary movie 2

The jet direction of four bubble collapses in different horizontal positions showing how the jet angle varies with horizontal position.

Download Andrews et al. supplementary movie 2(Video)
Video 8.2 MB
Supplementary material: PDF

Andrews et al. supplementary material

Supplementary figures

Download Andrews et al. supplementary material(PDF)
PDF 380.7 KB