Hostname: page-component-76c49bb84f-rx8cm Total loading time: 0 Render date: 2025-07-04T08:11:28.644Z Has data issue: false hasContentIssue false

Caustics of inertial particles observed along Lagrangian particle trajectories

Published online by Cambridge University Press:  30 June 2025

Yu Zhang
Affiliation:
Center for Combustion Energy and School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
Haitao Xu*
Affiliation:
Center for Combustion Energy and School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
*
Corresponding author: Haitao Xu, hxu@tsinghua.edu.cn

Abstract

We extend the perceived velocity gradient defined by a group of particles that was previously used to investigate the Lagrangian statistics of fluid turbulence to the study of inertial particle dynamics. Using data from direct numerical simulations, we observe the correlation between the strong compression in the particle phase and the instantaneous local fluid compression. Furthermore, the Lagrangian nature of the particle velocity gradient defined in this way allows an investigation of its evolution along particle trajectories, including the process after the caustic event, or the blow-up of the particle velocity gradient. Observations reveal that, for particles with Stokes number in the range $St \lesssim 1$, inertial particles experience the maximum compression by local fluid before the caustic event. Interestingly, data analyses show that, while the post-caustic process is mainly the relaxation of the particle motion and the particle relaxation time is the relevant time scale for the dynamics, the pre-caustic dynamics is controlled by the fluid–particle interaction and the proper time scale is determined by both the Kolmogorov time and the particle relaxation time.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bätge, T., Fouxon, I. & Wilczek, M. 2023 Quantitative prediction of sling events in turbulence at high Reynolds numbers. Phys. Rev. Lett. 131 (5), 054001.10.1103/PhysRevLett.131.054001CrossRefGoogle ScholarPubMed
Bec, J., Biferale, L., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2007 Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98 (8), 084502.10.1103/PhysRevLett.98.084502CrossRefGoogle ScholarPubMed
Betchov, R. 1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1 (5), 497504.10.1017/S0022112056000317CrossRefGoogle Scholar
Bewley, G.P., Saw, E.-W. & Bodenschatz, E. 2016 Observation of the sling effect. J. Fluid Mech. 15, 083051.Google Scholar
Blackburn, H.M., Mansour, N.N. & Cantwell, B.J. 1996 Topology of fine-scale motions in turbulent channel flow. J. Fluid Mech. 310, 269292.10.1017/S0022112096001802CrossRefGoogle Scholar
Chang, K., Malec, B.J. & Shaw, R.A. 2015 Turbulent pair dispersion in the presence of gravity. New J. Phys. 17 (3), 033010.10.1088/1367-2630/17/3/033010CrossRefGoogle Scholar
Chertkov, M., Pumir, A. & Shraiman, B.I. 1999 Lagrangian tetrad dynamics and the phenomenology of turbulence. Phys. Fluids 11 (8), 23942410.10.1063/1.870101CrossRefGoogle Scholar
Chong, M.S., Perry, A.E. & Cantwell, B.J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids 2 (5), 795–777.10.1063/1.857730CrossRefGoogle Scholar
Chun, J., Koch, D.L., Rani, S.L., Ahluwalia, A. & Collins, L.R. 2005 Clustering of aerosol particles in isotropic turbulence. J. Fluid Mech. 536, 219251.10.1017/S0022112005004568CrossRefGoogle Scholar
Falkovich, G., Fouxon, A. & Stepanov, M.G. 2002 Acceleration of rain initiation by cloud turbulence. Nature 419 (6903), 151154.10.1038/nature00983CrossRefGoogle ScholarPubMed
Falkovich, G. & Pumir, A. 2007 Sling effect in collisions of water droplets in turbulent clouds. J. Atmos. Sci. 64 (12), 44974505.10.1175/2007JAS2371.1CrossRefGoogle Scholar
Gustavsson, K. & Mehlig, B. 2013 Distribution of velocity gradients and rate of caustic formation in turbulent aerosols at finite Kubo numbers. Phys. Rev. E 87 (2), 023016.10.1103/PhysRevE.87.023016CrossRefGoogle ScholarPubMed
Gustavsson, K. & Mehlig, B. 2014 Relative velocities of inertial particles in turbulent aerosols. J. Turbul. 15 (1), 3469.10.1080/14685248.2013.875188CrossRefGoogle Scholar
Gustavsson, K. & Mehlig, B. 2016 Statistical models for spatial patterns of heavy particles in turbulence. Adv. Phys. 65 (1), 157.10.1080/00018732.2016.1164490CrossRefGoogle Scholar
Heisenberg, W. 1948 Zur statistischen theorie der turbulenz. Z. Physik 124 (7-12), 628657.10.1007/BF01668899CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 a Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR 125, 1517.Google Scholar
Kolmogorov, A.N. 1941 b The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. USSR Acad. Sci. 30, 299303.Google Scholar
La Porta, A., Voth, G.A., Crawford, A.M., Alexander, J. & Bodenschatz, E. 2001 Fluid particle accelerations in fully developed turbulence. Nature 409 (6823), 10171019.10.1038/35059027CrossRefGoogle ScholarPubMed
Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A. & Eyink, G. 2008 A public turbulence database cluster and applications to study lagrangian evolution of velocity increments in turbulence. J. Turbul. 9, 129.10.1080/14685240802376389CrossRefGoogle Scholar
Maxey, M.R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.10.1017/S0022112087000193CrossRefGoogle Scholar
Meibohm, J., Gustavsson, K. & Mehlig, B. 2023 Caustics in turbulent aerosols form along the Vieillefosse line at weak particle inertia. Phys. Rev. Fluids 8 (2), 024305.10.1103/PhysRevFluids.8.024305CrossRefGoogle Scholar
Ooi, A., Martin, J., Soria, J. & Chong, M.S. 1999 A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence. J. Fluid Mech. 381, 141174.10.1017/S0022112098003681CrossRefGoogle Scholar
Perrin, V.E. & Jonker, H.J.J. 2016 Effect of the eigenvalues of the velocity gradient tensor on particle collisions. J. Fluid Mech. 792, 3649.10.1017/jfm.2016.70CrossRefGoogle Scholar
Pumir, A., Bodenschatz, E. & Xu, H. 2013 Tetrahedron deformation and alignment of perceived vorticity and strain in a turbulent flow. Phys. Fluids 25 (3), 035101.10.1063/1.4795547CrossRefGoogle Scholar
Pumir, A. & Wilkinson, M. 2016 Collisional aggregation due to turbulence. Annu. Rev. Condens. Matt. Phys. 7 (1), 141170.10.1146/annurev-conmatphys-031115-011538CrossRefGoogle Scholar
Quentrec, B. & Brot, C. 1975 New method for searching for neighbors in molecular dynamics computations. J. Comput. Phys. 13 (3), 430432.10.1016/0021-9991(73)90046-6CrossRefGoogle Scholar
Saffman, P.G. & Turner, J.S. 1956 On the collision of drops in turbulent clouds. J. Fluid Mech. 1 (01), 1630.10.1017/S0022112056000020CrossRefGoogle Scholar
Safronov, V.S. 1969 Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets. Nauka. NASA Tech. Transl.Google Scholar
Saw, E.-W., Shaw, R.A., Salazar, J.P.L.C. & Collins, L.R. 2012 Spatial clustering of polydisperse inertial particles in turbulence: II. Comparing simulation with experiment. New J. Phys. 14, 105031.10.1088/1367-2630/14/10/105031CrossRefGoogle Scholar
Shaw, R.A. 2003 Particle–turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35 (1), 183227.10.1146/annurev.fluid.35.101101.161125CrossRefGoogle Scholar
Soria, J., Sondergaard, R., Cantwell, B.J., Chong, M.S. & Perry, A.E. 1994 A study of the fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids 6 (2), 871884.10.1063/1.868323CrossRefGoogle Scholar
Sundaram, S. & Collins, L.R. 1997 Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 335, 75109.10.1017/S0022112096004454CrossRefGoogle Scholar
Vieillefosse, P. 1982 Local interaction between vorticity and shear in a perfect incompressible fluid. J. Phys. 43 (6), 837842.10.1051/jphys:01982004306083700CrossRefGoogle Scholar
Vieillefosse, P. 1984 Internal motion of a small element of fluid in an inviscid flow. Physica A 125 (1), 150162.10.1016/0378-4371(84)90008-6CrossRefGoogle Scholar
Vosskuhle, M., Pumir, A., Lévêque, E. & Wilkinson, M. 2014 Prevalence of the sling effect for enhancing collision rates in turbulent suspensions. J. Fluid Mech. 749, 841852.10.1017/jfm.2014.259CrossRefGoogle Scholar
Wang, L.-P. & Maxey, M.R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.10.1017/S0022112093002708CrossRefGoogle Scholar
Wilkinson, M. & Mehlig, B. 2005 Caustics in turbulent aerosols. Europhys. Lett. 71 (2), 186192.10.1209/epl/i2004-10532-7CrossRefGoogle Scholar
Wilkinson, M., Mehlig, B. & Bezuglyy, V. 2006 Caustic activation of rain showers. Phys. Rev. Lett. 97 (4), 048501.10.1103/PhysRevLett.97.048501CrossRefGoogle ScholarPubMed
Xu, H., Ouellette, N.T. & Bodenschatz, E. 2008 Evolution of geometric structures in intense turbulence. New J. Phys. 10 (1), 013012.10.1088/1367-2630/10/1/013012CrossRefGoogle Scholar
Xu, H., Pumir, A. & Bodenschatz, E. 2011 The pirouette effect in turbulent flows. Nat. Phys. 7 (9), 709712.10.1038/nphys2010CrossRefGoogle Scholar
Yaglom, A.M. 1949 On the acceleration field in a turbulent flow. C. R. Akad. Sci. USSR 67, 795798.Google Scholar
Yang, P.-F., Pumir, A. & Xu, H. 2020 Dynamics and invariants of the perceived velocity gradient tensor in homogeneous and isotropic turbulence. J. Fluid Mech. 897, A9.10.1017/jfm.2020.375CrossRefGoogle Scholar