Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T02:39:38.892Z Has data issue: false hasContentIssue false

Causality of energy-containing eddies in wall turbulence

Published online by Cambridge University Press:  06 November 2019

Adrián Lozano-Durán*
Affiliation:
Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA
H. Jane Bae
Affiliation:
Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
Miguel P. Encinar
Affiliation:
School of Aeronautics, Universidad Politécnica de Madrid, Madrid 28040, Spain
*
Email address for correspondence: adrianld@stanford.edu

Abstract

Turbulent flows in the presence of walls may be apprehended as a collection of momentum- and energy-containing eddies (energy-eddies), whose sizes differ by many orders of magnitude. These eddies follow a self-sustaining cycle, i.e. existing eddies are seeds for the inception of new ones, and so forth. Understanding this process is critical for the modelling and control of geophysical and industrial flows, in which a non-negligible fraction of the energy is dissipated by turbulence in the immediate vicinity of walls. In this study, we examine the causal interactions of energy-eddies in wall-bounded turbulence by quantifying how the knowledge of the past states of eddies reduces the uncertainty of their future states. The analysis is performed via direct numerical simulation of turbulent channel flows in which time-resolved energy-eddies are isolated at a prescribed scale. Our approach unveils, in a simple manner, that causality of energy-eddies in the buffer and logarithmic layers is similar and independent of the eddy size. We further show an example of how novel flow control and modelling strategies can take advantage of such self-similar causality.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostini, L. & Leschziner, M. 2019 The connection between the spectrum of turbulent scales and the skin-friction statistics in channel flow at Re 𝜏 ≈ 1000. J. Fluid Mech. 871, 2251.Google Scholar
Alizard, F. 2015 Linear stability of optimal streaks in the log-layer of turbulent channel flows. Phys. Fluids 27 (10), 105103.Google Scholar
Andersson, P., Brandt, L., Bottara, A. & Henningson, D. S. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.Google Scholar
Bae, H. J., Encinar, M. P. & Lozano-Durán, A. 2018a Causal analysis of self-sustaining processes in the logarithmic layer of wall-bounded turbulence. J. Phys. 1001, 012013.Google Scholar
Bae, H. J., Lozano-Durán, A., Bose, S. T. & Moin, P. 2018b Dynamic wall model for the slip boundary condition in large-eddy simulation. J. Fluid Mech. 859, 400432.Google Scholar
Bae, H. J., Lozano-Durán, A., Bose, S. T. & Moin, P. 2018c Turbulence intensities in large-eddy simulation of wall-bounded flows. Phys. Rev. Fluids 3, 014610.Google Scholar
Bailey, S. C. C., Hultmark, M., Smits, A. J. & Schultz, M. P. 2008 Azimuthal structure of turbulence in high Reynolds number pipe flow. J. Fluid Mech. 615, 121138.Google Scholar
Barnett, L., Barrett, A. B. & Seth, A. K. 2009 Granger causality and transfer entropy are equivalent for Gaussian variables. Phys. Rev. Lett. 103, 238701.Google Scholar
Beebee, H., Hitchcock, C. & Menzies, P. 2012 The Oxford Handbook of Causation. Oxford University Press.Google Scholar
Bullock, K. J., Cooper, R. E. & Abernathy, F. H. 1978 Structural similarity in radial correlations and spectra of longitudinal velocity fluctuations in pipe flow. J. Fluid Mech. 88, 585608.Google Scholar
Butler, K. M. & Farrell, B. F. 1993 Optimal perturbations and streak spacing in wall-bounded turbulent shear flow. Phys. Fluids A 5, 774777.Google Scholar
Cardesa, J. I., Vela-Martín, A. & Jiménez, J. 2017 The turbulent cascade in five dimensions. Science 357 (6353), 782784.Google Scholar
Cassinelli, A., de Giovanetti, M. & Hwang, Y. 2017 Streak instability in near-wall turbulence revisited. J. Turbul. 18 (5), 443464.Google Scholar
Cerbus, R. T. & Goldburg, W. I. 2013 Information content of turbulence. Phys. Rev. E 88, 053012.Google Scholar
Chandran, D., Baidya, R., Monty, J. P. & Marusic, I. 2017 Two-dimensional energy spectra in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 826, R1.Google Scholar
Cheng, C., Li, W., Lozano-Durán, A. & Liu, H. 2019 Identity of attached eddies in turbulent channel flows with bidimensional empirical mode decomposition. J. Fluid Mech. 870, 10371071.Google Scholar
Chernyshenko, S. I. & Baig, M. F. 2005 The mechanism of streak formation in near-wall turbulence. J. Fluid Mech. 544, 99131.Google Scholar
Chorin, A. J. 1968 Numerical solution of the Navier–Stokes equations. Math. Comput. 22 (104), 745762.Google Scholar
Cossu, C. & Hwang, Y. 2017 Self-sustaining processes at all scales in wall-bounded turbulent shear flows. Phil. Trans. R. Soc. Lond. A 375 (2089), 20160088.Google Scholar
Darbellay, G. A. & Vajda, I. 1999 Estimation of the information by an adaptive partitioning of the observation space. IEEE Trans. Inf. Theory 45 (4), 13151321.Google Scholar
Davidson, P. A., Nickels, T. B. & Krogstad, P.-Å. 2006 The logarithmic structure function law in wall-layer turbulence. J. Fluid Mech. 550, 5160.Google Scholar
Del Álamo, J. C. & Jiménez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.Google Scholar
Del Alamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.Google Scholar
Del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2006 Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329358.Google Scholar
Dong, S., Lozano-Durán, A., Sekimoto, A. & Jiménez, J. 2017 Coherent structures in statistically stationary homogeneous shear turbulence. J. Fluid Mech. 816, 167208.Google Scholar
Duan, P., Yang, F., Chen, T. & Shah, S. L. 2013 Direct causality detection via the transfer entropy approach. IEEE Trans. Control Syst. Technol. 21 (6), 20522066.Google Scholar
Eddington, A. S. 1929 The Nature of the Physical World, 1st edn. Cambridge University Press.Google Scholar
Farrell, B. F., Gayme, D. F. & Ioannou, P. J. 2017 A statistical state dynamics approach to wall turbulence. Phil. Trans. R. Soc. Lond. A 375 (2089), 20160081.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2012 Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow. J. Fluid Mech. 708, 149196.Google Scholar
Farrell, B. F., Ioannou, P. J., Jiménez, J., Constantinou, N. C., Lozano-Durán, A. & Nikolaidis, M.-A. 2016 A statistical state dynamics-based study of the structure and mechanism of large-scale motions in plane Poiseuille flow. J. Fluid Mech. 809, 290315.Google Scholar
Flores, O. & Jiménez, J. 2010 Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids 22 (7), 071704.Google Scholar
Fujita, T. T. 1981 Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci. 38 (8), 15111534.Google Scholar
Gao, Y. & Er, M. J. 2005 NARMAX time series model prediction: feedforward and recurrent fuzzy neural network approaches. Fuzzy Sets Systems 150 (2), 331350.Google Scholar
Gencaga, D., Knuth, K. H. & Rossow, W. B. 2015 A recipe for the estimation of information flow in a dynamical system. Entropy 17 (1), 438470.Google Scholar
Granger, C. W. J. 1969 Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424438.Google Scholar
Guala, M., Hommema, S. E. & Adrian, R. J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.Google Scholar
Hahs, D. W. & Pethel, S. D. 2011 Distinguishing anticipation from causality: anticipatory bias in the estimation of information flow. Phys. Rev. Lett. 107, 128701.Google Scholar
Haller, G. 2015 Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47 (1), 137162.Google Scholar
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.Google Scholar
Hellström, L. H. O., Marusic, I. & Smits, A. J. 2016 Self-similarity of the large-scale motions in turbulent pipe flow. J. Fluid Mech. 792, R1.Google Scholar
Hlavackova-Schindler, K., Palus, M., Vejmelka, M. & Bhattacharya, J. 2007 Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 441 (1), 146.Google Scholar
Hof, B., de Lozar, A., Avila, M., Tu, X. & Schneider, T. M. 2010 Eliminating turbulence in spatially intermittent flows. Science 327 (5972), 14911494.Google Scholar
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to Re 𝜏 = 2003. Phys. Fluids 18 (1), 011702.Google Scholar
Hoyas, S. & Jiménez, J. 2008 Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys. Fluids 20 (10), 101511.Google Scholar
Hultmark, M., Vallikivi, M., Bailey, S. C. C. & Smits, A. J. 2012 Turbulent pipe flow at extreme Reynolds numbers. Phys. Rev. Lett. 108 (9), 094501.Google Scholar
Hwang, J. & Sung, H. J. 2018 Wall-attached structures of velocity fluctuations in a turbulent boundary layer. J. Fluid Mech. 856, 958983.Google Scholar
Hwang, J. & Sung, H. J. 2019 Wall-attached clusters for the logarithmic velocity law in turbulent pipe flow. Phys. Fluids 31 (5), 055109.Google Scholar
Hwang, Y. & Cossu, C. 2010 Self-sustained process at large scales in turbulent channel flow. Phys. Rev. Lett. 105, 044505.Google Scholar
Hwang, Y. & Cossu, C. 2011 Self-sustained processes in the logarithmic layer of turbulent channel flows. Phys. Fluids 23 (6), 061702.Google Scholar
Jiménez, J. 2012 Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech. 44, 2745.Google Scholar
Jiménez, J. 2013 How linear is wall-bounded turbulence? Phys. Fluids 25, 110814.Google Scholar
Jiménez, J. 2015 Direct detection of linearized bursts in turbulence. Phys. Fluids 27 (6), 065102.Google Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.Google Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.Google Scholar
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.Google Scholar
Kaiser, A. & Schreiber, T. 2002 Information transfer in continuous processes. Physica D 166 (1), 4362.Google Scholar
Kawahara, G., Jiménez, J., Uhlmann, M. & Pinelli, A. 2003 Linear instability of a corrugated vortex sheet – a model for streak instability. J. Fluid Mech. 483, 315342.Google Scholar
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44 (1), 203225.Google Scholar
Kim, J. & Lim, J. 2000 A linear process in wall-bounded turbulent shear flows. Phys. Fluids 12 (8), 18851888.Google Scholar
Kim, K. C. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.Google Scholar
Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962 The three-dimensional nature of boundary-layer instability. J. Fluid Mech. 12 (1), 134.Google Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (04), 741773.Google Scholar
Kozachenko, L. F. & Leonenko, N. N. 1987 Sample estimate of the entropy of a random vector. Probl. Peredachi Inf. 23 (2), 916.Google Scholar
Kraskov, A., Stögbauer, H. & Grassberger, P. 2004 Estimating mutual information. Phys. Rev. E 69, 066138.Google Scholar
Kreiss, J.-P. & Lahiri, S. N. 2012 Bootstrap methods for time series. In Handbook of Statistics (ed. Rao, T. S., Rao, S. S. & Rao, C. R.), vol. 30, pp. 326. Elsevier.Google Scholar
Kühnen, J., Song, B., Scarselli, D., Budanur, N. B., Riedl, M., Willis, A. P., Avila, M. & Hof, B. 2018 Destabilizing turbulence in pipe flow. Nat. Phys. 14 (4), 386390.Google Scholar
Landahl, M. T. & Landahlt, M. T. 1975 Wave breakdown and turbulence. SIAM J. Appl. Maths 28, 735756.Google Scholar
Liang, X. S. 2014 Unraveling the cause-effect relation between time series. Phys. Rev. E 90 (5-1), 052150.Google Scholar
Liang, X. S. & Kleeman, R. 2006 Information transfer between dynamical system components. Phys. Rev. Lett. 95, 244101.Google Scholar
Liang, X. S. & Lozano-Durán, A. 2017 A preliminary study of the causal structure in fully developed near-wall turbulence. In CTR – Proc. Summer Prog., pp. 233242. Stanford University.Google Scholar
Lin, T., Horne, B. G., Tino, P. & Giles, C. L. 1996 Learning long-term dependencies in NARX recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 7 (6), 13291338.Google Scholar
Lozano-Durán, A. & Bae, H. J. 2019 Characteristic scales of Townsend’s wall-attached eddies. J. Fluid Mech. 868, 698725.Google Scholar
Lozano-Durán, A., Flores, O. & Jiménez, J. 2012 The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech. 694, 100130.Google Scholar
Lozano-Durán, A., Hack, M. J. P. & Moin, P. 2018a Modeling boundary-layer transition in direct and large-eddy simulations using parabolized stability equations. Phys. Rev. Fluids 3, 023901.Google Scholar
Lozano-Durán, A. & Jiménez, J. 2014a Effect of the computational domain on direct simulations of turbulent channels up to Re 𝜏 = 4200. Phys. Fluids 26 (1), 011702.Google Scholar
Lozano-Durán, A. & Jiménez, J. 2014b Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432471.Google Scholar
Lozano-Durán, A., Karp, M. & Constantinou, N. C. 2018b Wall turbulence with constrained energy extraction from the mean flow. In Center for Turbulence Research – Annual Research Briefs, pp. 209220. Stanford University.Google Scholar
Mansour, N. N., Kim, J. & Moin, P. 1988 Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 1544.Google Scholar
Marusic, I., Mathis, R. & Hutchins, N. 2010 Predictive model for wall-bounded turbulent flow. Science 329 (5988), 193196.Google Scholar
Marusic, I. & Monty, J. P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51, 4974.Google Scholar
McCulloch, W. S. & Pitts, W. 1943 A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5 (4), 115133.Google Scholar
McKeon, B. J. 2017 The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech. 817, P1.Google Scholar
McKeon, B. J., Li, J., Jiang, W., Morrison, J. F. & Smits, A. J. 2004 Further observations on the mean velocity distribution in fully developed pipe flow. J. Fluid Mech. 501, 135147.Google Scholar
Mizuno, Y. & Jiménez, J. 2011 Mean velocity and length-scales in the overlap region of wall-bounded turbulent flows. Phys. Fluids 23 (8), 085112.Google Scholar
Moarref, R., Sharma, A. S., Tropp, J. A. & McKeon, B. J. 2013 Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels. J. Fluid Mech. 734, 275316.Google Scholar
Monty, J. P., Stewart, J. A., Williams, R. C. & Chong, M. S. 2007 Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147156.Google Scholar
Morrison, W. R. B. & Kronauer, R. E. 1969 Structural similarity for fully developed turbulence in smooth tubes. J. Fluid Mech. 39 (1), 117141.Google Scholar
Onsager, L. 1949 Statistical hydrodynamics. Il Nuovo Cimento 6, 279287.Google Scholar
Orlandi, P. 2000 Fluid Flow Phenomena: A Numerical Toolkit. Springer.Google Scholar
Orr, W. M’F. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II. A viscous liquid. Math. Proc. R. Irish Acad. 27, 69138.Google Scholar
Paluš, M. 1995 Testing for nonlinearity using redundancies: quantitative and qualitative aspects. Physica D 80 (1), 186205.Google Scholar
Panton, R. L. 2001 Overview of the self-sustaining mechanisms of wall turbulence. Prog. Aerosp. Sci. 37 (4), 341383.Google Scholar
Park, J., Hwang, Y. & Cossu, C. 2011 On the stability of large-scale streaks in turbulent Couette and Poiseulle flows. C. R. Méc 339 (1), 15.Google Scholar
Pearl, J. 2009 Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University Press.Google Scholar
Perry, A. E. & Abell, C. J. 1975 Scaling laws for pipe-flow turbulence. J. Fluid Mech. 67, 257271.Google Scholar
Perry, A. E. & Abell, C. J. 1977 Asymptotic similarity of turbulence structures in smooth- and rough-walled pipes. J. Fluid Mech. 79, 785799.Google Scholar
Perry, A. E. & Chong, M. S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119 (119), 173217.Google Scholar
Perry, A. E., Henbest, S. & Chong, M. S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163199.Google Scholar
Perry, A. E. & Marusic, I. 1995 A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid Mech. 298, 361388.Google Scholar
Prokopenko, M. & Lizier, J. T. 2014 Transfer entropy and transient limits of computation. Sci. Rep. 4, 5394.Google Scholar
Pujals, G., García-Villalba, M., Cossu, C. & Depardon, S. 2009 A note on optimal transient growth in turbulent channel flows. Phys. Fluids 21 (1), 015109.Google Scholar
Richardson, L. F. 1922 Weather Prediction by Numerical Process. Cambridge University Press.Google Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.Google Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.Google Scholar
Schreiber, T. 2000 Measuring information transfer. Phys. Rev. Lett. 85, 461.Google Scholar
Sekimoto, A., Dong, S. & Jiménez, J. 2016 Direct numerical simulation of statistically stationary and homogeneous shear turbulence and its relation to other shear flows. Phys. Fluids 28 (3), 035101.Google Scholar
Shannon, C. E. 1948 A mathematical theory of communication. Bell Syst. Tech. J 27 (3), 379423.Google Scholar
Sirovich, L. & Karlsson, S. 1997 Turbulent drag reduction by passive mechanisms. Nature 388, 753.Google Scholar
Smits, A. J., McKeon, B. J. & Marusic, I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43 (1), 353375.Google Scholar
Spinney, R. E., Lizier, J. T. & Prokopenko, M. 2016 Transfer entropy in physical systems and the arrow of time. Phys. Rev. E 94, 022135.Google Scholar
Stokes, P. A. & Purdon, P. L. 2017 A study of problems encountered in Granger causality analysis from a neuroscience perspective. Proc. Natl Acad. Sci. USA 114 (34), E7063E7072.Google Scholar
Swearingen, J. D. & Blackwelder, R. F. 1987 The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech. 182, 255290.Google Scholar
Thomas, D. & Julia, P. F. 2013 Using transfer entropy to measure information flows between financial markets. Stud. Nonlinear Dyn. Econometrics 17 (1), 85102.Google Scholar
Tissot, G., Lozano-Durán, A., Jiménez, J., Cordier, L. & Noack, B. R. 2014 Granger causality in wall-bounded turbulence. J. Phys.: Conf. Ser. 506 (1), 012006.Google Scholar
Tomkins, C. D. & Adrian, R. J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.Google Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Vallikivi, M., Ganapathisubramani, B. & Smits, A. J. 2015 Spectral scaling in boundary layers and pipes at very high Reynolds numbers. J. Fluid Mech. 771, 303326.Google Scholar
Vaughan, N. J. & Zaki, T. A. 2011 Stability of zero-pressure-gradient boundary layer distorted by unsteady Klebanoff streaks. J. Fluid Mech. 681, 116153.Google Scholar
Waleffe, F. 1995 Hydrodynamic stability and turbulence: beyond transients to a self-sustaining process. Stud. Appl. Maths 95 (3), 319343.Google Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.Google Scholar
Wand, M. P. & Jones, M. C. 1994 Kernel Smoothing. Taylor and Francis.Google Scholar
Wray, A. A.1990 Minimal-storage time advancement schemes for spectral methods. NASA Tech. Rep. Google Scholar
Wu, X., Moin, P., Wallace, J. M., Skarda, J., Lozano-Durán, A. & Hickey, J.-P. 2017 Transitional–turbulent spots and turbulent–turbulent spots in boundary layers. Proc. Natl Acad. Sci. USA 114 (27), E5292E5299.Google Scholar

Lozano-Durán et al. supplementary movie

Explanatory video of the problem set-up and numerical simulations.
Download Lozano-Durán et al. supplementary movie(Video)
Video 51.5 MB