Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T01:18:44.611Z Has data issue: false hasContentIssue false

Bulk flow driven by a viscous monolayer

Published online by Cambridge University Press:  23 November 2015

Aditya Raghunandan
Affiliation:
Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
Juan M. Lopez
Affiliation:
School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA
Amir H. Hirsa*
Affiliation:
Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
*
Email address for correspondence: hirsaa@rpi.edu

Abstract

The flow in the bulk driven by a viscous interfacial film set in motion by a rotating sharp circular knife edge has been examined through experiments and computations. In the experiments, the water surface is covered by an insoluble monomolecular film of dipalmitoylphosphatidylcholine (DPPC), a molecule of wide interest in biology and medicine. It is shown that the viscous coupling between the interfacial film and the bulk liquid leads to a strong bulk flow. Depending on the surface packing and corresponding surface tension, DPPC monolayers exhibit a wide range of phase morphologies. Upon shearing the monolayer, its viscous response varies from that of an essentially inviscid film at low surface packing, to that of a highly viscous non-Newtonian (shear thinning) film when the packing is dense. The more viscous the film, the stronger the driven bulk flow. We have examined this behaviour for hydrodynamic regimes straddling the Stokes flow regime and where flow inertia is important.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aroti, A., Leontidis, E., Maltseva, E. & Brezesinski, G. 2004 Effects of Hofmeister anions on DPPC Langmuir monolayers at the air–water interface. J. Phys. Chem. B 108, 1523815245.CrossRefGoogle Scholar
Baoukina, S., Monticelli, L., Risselada, H. J., Marrink, S. J. & Tieleman, D. P. 2008 The molecular mechanism of lipid monolayer collapse. Proc. Natl Acad. Sci. USA 105, 1080310808.CrossRefGoogle ScholarPubMed
Choi, S. Q., Steltenkamp, S., Zasadzinski, J. A. & Squires, T. M. 2011 Active microrheology and simultaneous visualization of sheared phospholipid monolayers. Nature Commun. 2, 312.CrossRefGoogle ScholarPubMed
Ding, J., Warriner, H. E. & Zasadzinski, J. A. 2002a Viscosity of two-dimensional suspensions. Phys. Rev. Lett. 88, 168102.CrossRefGoogle ScholarPubMed
Ding, J., Warriner, H. E., Zasadzinski, J. A. & Schwartz, D. K. 2002b Magnetic needle viscometer for Langmuir monolayers. Langmuir 18, 28002806.CrossRefGoogle Scholar
Dluhy, R. A., Reilly, K. E., Hunt, R. D., Mitchell, M. L., Mautone, A. J. & Mendelsohn, R. 1989 Infrared spectroscopic investigations of pulmonary surfactant – surface-film transitions at the air–water-interface and bulk phase thermotropism. Biophys. J. 56, 11731181.CrossRefGoogle ScholarPubMed
Dynarowicz-Latka, P., Dhanabalan, A. & Oliveira, O. N. 2001 Modern physicochemical research on Langmuir monolayers. Adv. Colloid Interface Sci. 91, 221293.CrossRefGoogle ScholarPubMed
Edwards, D. A., Brenner, H. & Wasan, D. T. 1991 Interfacial Transport Processes and Rheology. Butterworth-Heinemann.Google Scholar
Fitzgibbon, S., Shaqfeh, E. S. G., Fuller, G. G. & Walker, T. W. 2014 Scaling analysis and mathematical theory of the interfacial stress rheometer. J. Rheol. 58, 9991038.CrossRefGoogle Scholar
Gaines, G. L. 1966 Insoluble Monolayers at Liquid–Gas Interfaces. Interscience.Google Scholar
Hambor, J. E. 2012 Bioreactor design and bioprocess controls for industrialized cell processing. BioProcess International 10, 2233.Google Scholar
Helm, C. A., Kjaer, K., Mohwald, H. & Als-Nielsen, J. 1987 Phospholipid monolayer density distribution perpendicular to the water-surface – a synchrotron X-ray reflectivity study. Europhys. Lett. 4, 697703.CrossRefGoogle Scholar
Hermans, E. & Vermant, J. 2014 Interfacial shear rheology of DPPC under physiologically relevant conditions. Soft Matt. 10, 175186.CrossRefGoogle ScholarPubMed
Hirsa, A. H., Lopez, J. M. & Miraghaie, R. 2001 Measurement and computation of hydrodynamic coupling at an air/water interface in the presence of an insoluble monolayer. J. Fluid Mech. 443, 271292.CrossRefGoogle Scholar
Hirsa, A. H., Lopez, J. M. & Miraghaie, R. 2002 Determination of surface shear viscosity via deep-channel flow with inertia. J. Fluid Mech. 470, 135149.CrossRefGoogle Scholar
Krägel, J. & Derkatch, S. R. 2010 Interfacial shear rheology. Curr. Opin. Colloid Interface Sci. 15, 246255.CrossRefGoogle Scholar
Krägel, J., Derkatch, S. R. & Miller, R. 2008 Interfacial shear rheology of protein-surfactant layers. Adv. Colloid Interface Sci. 144, 3853.CrossRefGoogle ScholarPubMed
Langevin, D. 2014a Rheology of adsorbed surfactant monolayers at fluid surfaces. Annu. Rev. Fluid Mech. 46, 4765.CrossRefGoogle Scholar
Langevin, D. 2014b Surface shear rheology of monolayers at the surface of water. Adv. Colloid Interface Sci. 207, 121130.CrossRefGoogle ScholarPubMed
Lopez, J. M. & Hirsa, A. 1998 Direct determination of the dependence of the surface shear and dilatational viscosities on the thermodynamic state of the interface: theoretical foundations. J. Colloid Interface Sci. 206, 231239.CrossRefGoogle ScholarPubMed
Lopez, J. M. & Hirsa, A. 2000 Surfactant influenced gas/liquid interfaces: nonlinear equation of state and finite surface viscosities. J. Colloid Interface Sci. 229, 575583.CrossRefGoogle ScholarPubMed
Lopez, J. M. & Hirsa, A. H. 2015 Coupling of the interfacial and bulk flow in knife-edge viscometers. Phys. Fluids 27, 042102.CrossRefGoogle Scholar
Mannheimer, R. J. & Schechter, R. S. 1970 An improved apparatus and analysis for surface rheological measurements. J. Colloid Interface Sci. 32, 195211.CrossRefGoogle Scholar
McConnell, H. M. 1991 Structures and transitions in lipid monolayers at the air–water interface. Annu. Rev. Phys. Chem. 42, 171195.CrossRefGoogle Scholar
Nishimura, S. Y., Magana, G. M., Ketelson, H. A. & Fuller, G. G. 2008 Effect of lysozyme adsorption on the interfacial rheology of DPPC and cholesteryl myristate films. Langmuir 24, 1172811733.CrossRefGoogle ScholarPubMed
Reynaert, S., Brooks, C. F., Moldenaers, P., Vermant, J. & Fuller, G. G. 2008 Analysis of the magnetic rod interfacial stress rheometer. J. Rheol. 52, 261285.CrossRefGoogle Scholar
Roke, S., Schins, J., Müller, M. & Bonn, M. 2003 Vibrational spectroscopic investigation of the phase diagram of a biomimetic lipid monolayer. Phys. Rev. Lett. 90, 14.CrossRefGoogle ScholarPubMed
Sadoughi, A. H., Lopez, J. M. & Hirsa, A. H. 2013 Transition from Newtonian to non-Newtonian surface shear viscosity of phospholipid monolayers. Phys. Fluids 25, 032107.CrossRefGoogle Scholar
Scriven, L. E. 1960 Dynamics of a fluid interface. Chem. Engng Sci. 12, 98108.CrossRefGoogle Scholar
Slattery, J. C., Sagis, L. & Oh, E.-S. 2007 Interfacial Transport Phenomena, 2nd edn. Springer.Google Scholar
Sundaram, S., Ferri, J. K., Vollhardt, D. & Stebe, K. J. 1998 Surface phase behavior and surface tension evolution for lysozyme adsorption onto clean interfaces and into DPPC monolayers: theory and experiment. Langmuir 14, 12081218.CrossRefGoogle Scholar
von Tscharner, V. & McConnell, H. M. 1981 An alternative view of phospholipid phase behavior at the air–water interface: microscope and film balance studies. Biophys. J. 36, 409419.CrossRefGoogle ScholarPubMed
Vandebril, S., Franck, A., Fuller, G. G., Moldnaers, P. & Vermant, J. 2010 A double wall-ring geometry for interfacial shear rheology. Rheol. Acta 49, 131144.CrossRefGoogle Scholar
Verwijlen, T., Moldenaers, P., Stone, H. A. & Vermant, J. 2011 Study of the flow field in the magnetic rod interfacial rheometer. Langmuir 27, 93459358.CrossRefGoogle Scholar
Vogel, M. J. & Hirsa, A. H. 2002 Concentration measurements downstream of an insoluble monolayer front. J. Fluid Mech. 472, 283305.CrossRefGoogle Scholar
Walder, R., Levine, A. J. & Dennin, M. 2008 Rheology of two-dimensional $F$ -actin networks associated with a lipid interface. Phys. Rev. E 77, 18.CrossRefGoogle ScholarPubMed
Wüstneck, N., Wüstneck, R., Pison, U., Fainerman, V. B. & Miller, R. 2001 Interfacial behaviour and mechanical properties of spread lung surfactant protein/lipid layers. J. Colloid Interface Sci. 21, 191205.Google ScholarPubMed