Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T03:52:43.313Z Has data issue: false hasContentIssue false

Bridging the gap between particle-scale forces and continuum modelling of size segregation: application to bedload transport

Published online by Cambridge University Press:  12 April 2021

Hugo Rousseau*
Affiliation:
Univ. Grenoble Alpes, INRAE, UR ETNA, 38000Grenoble, France
Remi Chassagne
Affiliation:
Univ. Grenoble Alpes, INRAE, UR ETNA, 38000Grenoble, France Univ. Grenoble Alpes, LEGI, CNRS, UMR 5519, Grenoble, France
Julien Chauchat
Affiliation:
Univ. Grenoble Alpes, LEGI, CNRS, UMR 5519, Grenoble, France
Raphael Maurin
Affiliation:
IMFT, Univ. Toulouse, CNRS, Toulouse, France
Philippe Frey
Affiliation:
Univ. Grenoble Alpes, INRAE, UR ETNA, 38000Grenoble, France
*
Email address for correspondence: hugo.rousseau@inrae.fr

Abstract

Gravity-driven size segregation is important in mountain streams where a wide range of grain sizes are transported as bedload. More particularly, vertical size segregation is a multi-scale process that originates in interactions at the scale of particles with important morphological consequences for the river bed. To address this issue, a volume-averaged multi-phase flow model for immersed bi-disperse granular flows was developed based on an interparticle segregation force (Guillard et al., J. Fluid Mech., vol. 807, 2016, R1) and a granular Stokesian drag force (Tripathi & Khakhar, J. Fluid Mech., vol. 717, 2013, pp. 643–669). An advection–diffusion model was derived from this model yielding parametrisations for the advection and diffusion coefficients based on the interparticle interactions. This approach makes it possible to bridge the gap between grain-scale physics and continuum modelling. Both models were successfully tested against existing discrete element model (DEM) simulations of size segregation in bedload transport (Chassagne et al., J. Fluid Mech., vol. 895, 2020, A30). Through a detailed investigation of the granular forces, it is demonstrated that the observed scaling of the advection and diffusion coefficients with the inertial number can be explained by the granular drag force dependency on the viscosity. The drag coefficient is shown to be linearly dependent on the small particle concentration. A new scaling relationship for the segregation force including the small particle concentration and the pressure is proposed. Lastly, adding a size-ratio dependency in the segregation force fairly reproduces the DEM results for a large range of small particle concentrations and size ratios.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bacchi, V., Recking, A., Eckert, N., Frey, P., Piton, G. & Naaim, M. 2014 The effects of kinetic sorting on sediment mobility on steep slopes. Earth Surf. Proc. Land. 39 (8), 10751086.CrossRefGoogle Scholar
Bathurst, J.C. 2007 Effect of coarse surface layer on bed-load transport. J. Hydraul. Engng ASCE 133 (11), 11921205.CrossRefGoogle Scholar
Bridgwater, J., Foo, W.S. & Stephens, D.J. 1985 Particle mixing and segregation in failure zones—theory and experiment. Powder Technol. 41 (2), 147158.CrossRefGoogle Scholar
Cai, R., Xiao, H., Zheng, J. & Zhao, Y. 2019 Diffusion of size bidisperse spheres in dense granular shear flow. Phys. Rev. E 99 (3), 032902.CrossRefGoogle ScholarPubMed
Chassagne, R., Frey, P., Maurin, R. & Chauchat, J. 2020 a Mobility of bidisperse mixtures during bedload transport. Phys. Rev. Fluids 895, 004300.Google Scholar
Chassagne, R., Maurin, R., Chauchat, J., Gray, J.M.N.T. & Frey, P. 2020 b Discrete and continuum modelling of grain size segregation during bedload transport. J. Fluid Mech. 895, A30.CrossRefGoogle Scholar
Chauchat, J. 2018 A comprehensive two-phase flow model for unidirectional sheet-flows. J. Hydraul. Res. 56 (1), 1528.CrossRefGoogle Scholar
Chauchat, J., Cheng, Z., Nagel, T., Bonamy, C. & Hsu, T.-J. 2017 SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport. Geosci. Model Dev. 10 (12), 43674392.CrossRefGoogle Scholar
da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72 (2), 021309.CrossRefGoogle ScholarPubMed
Denissen, I.F.C., Weinhart, T., Te Voortwis, A., Luding, S., Gray, J.M.N.T. & Thornton, A.R. 2019 Bulbous head formation in bidisperse shallow granular flow over an inclined plane. J. Fluid Mech. 866, 263297.CrossRefGoogle Scholar
Ding, Y., Gravish, N. & Goldman, D.I. 2011 Drag induced lift in granular media. Phys. Rev. Lett. 106 (2), 028001.CrossRefGoogle ScholarPubMed
Dolgunin, V.N., Kudy, A.N. & Ukolov, A.A. 1998 Development of the model of segregation of particles undergoing granular flow down an inclined chute. Powder Technol. 96 (3), 211218.CrossRefGoogle Scholar
Dolgunin, V.N. & Ukolov, A.A. 1995 Segregation modeling of particle rapid gravity flow. Powder Technol. 83 (2), 95103.CrossRefGoogle Scholar
Duan, Y., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2020 Segregation models for density-bidisperse granular flows. Phys. Rev. Fluids 5, 044301.CrossRefGoogle Scholar
Dudill, A., Frey, P. & Church, M. 2017 Infiltration of fine sediment into a coarse mobile bed: A phenomenological study. Earth Surf. Proc. Land. 42 (8), 11711185.CrossRefGoogle Scholar
Dudill, A., Lafaye de Micheaux, H., Frey, P. & Church, M. 2018 Introducing finer grains into bedload: the transition to a new equilibrium. J. Geophys. Res.: Earth 123 (10), 26022619.CrossRefGoogle Scholar
Dudill, A., Venditti, J.G., Church, M. & Frey, P. 2020 Comparing the behaviour of spherical beads and natural grains in bedload mixtures. Earth Surf. Proc. Land. 45 (4), 831840.CrossRefGoogle Scholar
Fan, Y., Schlick, C.P., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2014 a Modelling size segregation of granular materials: the roles of segregation, advection and diffusion. J. Fluid Mech. 741, 252279.CrossRefGoogle Scholar
Fan, Y., Schlick, C.P., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2014 b Modelling size segregation of granular materials: the roles of segregation, advection and diffusion. J. Fluid Mech. 741, 252279.CrossRefGoogle Scholar
Fan, Y., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2015 Shear-rate-independent diffusion in granular flows. Phys. Rev. Lett. 115, 088001.CrossRefGoogle ScholarPubMed
Ferdowsi, B., Ortiz, C.P., Houssais, M. & Jerolmack, D.J. 2017 River-bed armouring as a granular segregation phenomenon. Nat. Commun. 8 (1), 1363.CrossRefGoogle ScholarPubMed
Ferguson, R.I., Church, M., Rennie, C.D. & Venditti, J.G. 2015 Reconstructing a sediment pulse: modeling the effect of placer mining on Fraser River, Canada: Fraser River mine waste model. J. Geophys. Res.arch: Earth 120 (7), 14361454.CrossRefGoogle Scholar
Frey, P. & Church, M. 2009 How river beds move. Science 325 (5947), 15091510.CrossRefGoogle ScholarPubMed
Frey, P. & Church, M. 2011 Bedload: a granular phenomenon. Earth Surf. Proc. Land. 36 (1), 5869.CrossRefGoogle Scholar
Frey, P., Lafaye de Micheaux, H., Bel, C., Maurin, R., Rorsman, K., Martin, T. & Ducottet, C. 2020 Experiments on grain size segregation in bedload transport on a steep slope. Adv. Water Resour. 136, 103478.CrossRefGoogle Scholar
Fry, A.M., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2018 Effect of pressure on segregation in granular shear flows. Phys. Rev. E 97 (6-1), 062906.CrossRefGoogle ScholarPubMed
Fry, A.M., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2019 Diffusion, mixing, and segregation in confined granular flows. AIChE J. 65 (3), 875881.CrossRefGoogle Scholar
GDR MiDi 2004 On dense granular flows. Eur. Phys. J. E 14 (4), 341365.CrossRefGoogle Scholar
Gilbert, G.K. & Murphy, E.C. 1914 The transportation of debris by running waters. Professional paper 86, U.S. Geological Survey, Washington DC, p. 261.Google Scholar
Golick, L.A. & Daniels, K.E. 2009 Mixing and segregation rates in sheared granular materials. Phys. Rev. E 80 (4), 042301.CrossRefGoogle ScholarPubMed
Gray, J.M.N.T & Thornton, A.R 2005 A theory for particle size segregation in shallow granular free-surface flows. Proc. R. Soc. Lond. A 461 (2057), 14471473.Google Scholar
Gray, J.M.N.T. 2018 Particle segregation in dense granular flows. Annu. Rev. Fluid Mech. 50 (1), 407433.CrossRefGoogle Scholar
Gray, J.M.N.T. & Ancey, C. 2011 Multi-component particle-size segregation in shallow granular avalanches. J. Fluid Mech. 678, 535588.CrossRefGoogle Scholar
Gray, J.M.N.T. & Chugunov, V.A. 2006 Particle-size segregation and diffusive remixing in shallow granular avalanches. J. Fluid Mech. 569, 365398.CrossRefGoogle Scholar
Guillard, F., Forterre, Y. & Pouliquen, O. 2014 Lift forces in granular media. Phys. Fluids 26 (4), 043301.CrossRefGoogle Scholar
Guillard, F., Forterre, Y. & Pouliquen, O. 2016 Scaling laws for segregation forces in dense sheared granular flows. J. Fluid Mech. 807, R1.CrossRefGoogle Scholar
Hergault, V., Frey, P., Métivier, F., Barat, C., Ducottet, C., Böhm, T. & Ancey, C. 2010 Image processing for the study of bedload transport of two-size spherical particles in a supercritical flow. Exp. Fluids 49 (5), 10951107.CrossRefGoogle Scholar
Hill, K.M. & Tan, D.S. 2014 Segregation in dense sheared flows: gravity, temperature gradients, and stress partitioning. J. Fluid Mech. 756, 5488.CrossRefGoogle Scholar
Jackson, R. 1997 Locally averaged equations of motion for a mixture of identical spherical particles and a Newtonian fluid. Chem. Engng Sci. 52 (15), 24572469.CrossRefGoogle Scholar
Jackson, R. 2000 The Dynamics of Fluidized Particles. Cambridge University Press.Google Scholar
Jing, L., Ottino, J.M., Lueptow, R.M. & Umbanhowar, P.B. 2020 Rising and sinking intruders in dense granular flows. Phys. Rev. Res. 2, 022069.CrossRefGoogle Scholar
Johnson, P.C. & Jackson, R. 1987 Frictional-collisional constitutive relations for granular materials, with application to plane shearing. J. Fluid Mech. 176, 6793.CrossRefGoogle Scholar
Jones, R.P., Isner, A.B., Xiao, H., Ottino, J.M., Umbanhowar, P.B. & Lueptow, R.M. 2018 Asymmetric concentration dependence of segregation fluxes in granular flows. Phys. Rev. Fluids 3 (9), 094304.CrossRefGoogle Scholar
Lafaye de Micheaux, H., Ducottet, C. & Frey, P. 2018 Multi-model particle filter-based tracking with switching dynamical state to study bedload transport. Mach. Vis. Appl. 29 (5), 735747.CrossRefGoogle Scholar
Maurin, R., Chauchat, J., Chareyre, B. & Frey, P. 2015 A minimal coupled fluid-discrete element model for bedload transport. Phys. Fluids 27 (11), 113302.CrossRefGoogle Scholar
Maurin, R., Chauchat, J. & Frey, P. 2016 Dense granular flow rheology in turbulent bedload transport. J. Fluid Mech. 804, 490512.CrossRefGoogle Scholar
Maurin, R., Chauchat, J. & Frey, P. 2018 Revisiting slope influence in turbulent bedload transport: consequences for vertical flow structure and transport rate scaling. J. Fluid Mech. 839, 135156.CrossRefGoogle Scholar
Morland, L.W. 1992 Flow of viscous fluids through a porous deformable matrix. Surv. Geophys. 13 (3), 209268.CrossRefGoogle Scholar
Nagel, T., Chauchat, J., Bonamy, C., Liu, X., Cheng, Z. & Hsu, T.-J. 2020 Three-dimensional scour simulations with a two-phase flow model. Adv. Water Resour. 138, 103544.CrossRefGoogle Scholar
Nelson, P.A., Dietrich, W.E. & Venditti, J.G. 2010 Bed topography and the development of forced bed surface patches. J. Geophys. Res. 115 (F4), F04024.CrossRefGoogle Scholar
O'Donoghue, T. & Wright, S. 2004 Concentrations in oscillatory sheet flow for well sorted and graded sands. Coast. Engng 50 (3), 117138.CrossRefGoogle Scholar
Paola, C., Parker, G., Seal, R., Sinha, S.K., Southard, J.B. & Wilcock, P.R. 1992 Downstream fining by selective deposition in a laboratory flume. Science 258 (5089), 17571760.CrossRefGoogle Scholar
Richardson, J.F. & Zaki, W.N. 1954 The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem. Engng Sci. 3 (2), 6573.CrossRefGoogle Scholar
Savage, S.B. & Lun, C.K.K. 1988 Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189, 311335.CrossRefGoogle Scholar
Schlick, C.P., Fan, Y., Isner, A.B., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2015 Modeling segregation of bidisperse granular materials using physical control parameters in the quasi-2d bounded heap. AIChE J. 61 (5), 15241534.CrossRefGoogle Scholar
Staron, L. 2018 Rising dynamics and lift effect in dense segregating granular flows. Phys. Fluids 30 (12), 123303.CrossRefGoogle Scholar
Stokes, G.G. 1851 Mathematical and Physical Papers. Cambridge University Press.Google Scholar
Thomas, N. 2000 Reverse and intermediate segregation of large beads in dry granular media. Phys. Rev. E 62 (1), 961974.CrossRefGoogle ScholarPubMed
Thornton, A.R., Gray, J.M.N.T. & Hogg, A.J. 2006 A three-phase mixture theory for particle size segregation in shallow granular free-surface flows. J. Fluid Mech. 550, 125.CrossRefGoogle Scholar
Tripathi, A. & Khakhar, D.V. 2011 Numerical simulation of the sedimentation of a sphere in a sheared granular fluid: a granular stokes experiment. Phys. Rev. Lett. 107, 108001.CrossRefGoogle Scholar
Tripathi, A. & Khakhar, D.V. 2013 Density difference-driven segregation in a dense granular flow. J. Fluid Mech. 717, 643669.CrossRefGoogle Scholar
Umbanhowar, P.B., Lueptow, R.M. & Ottino, J.M. 2019 Modeling segregation in granular flows. Annu. Rev. Chem. Biomol. 10 (1), 129153.CrossRefGoogle ScholarPubMed
van der Vaart, K., Gajjar, P., Epely-Chauvin, G., Andreini, N., Gray, J.M.N.T. & Ancey, C. 2015 Underlying asymmetry within particle size segregation. Phys. Rev. Lett. 114 (23), 238001.CrossRefGoogle ScholarPubMed
van der Vaart, K., van Schrojenstein Lantman, M.P., Weinhart, T., Luding, S., Ancey, C. & Thornton, A.R. 2018 Segregation of large particles in dense granular flows suggests a granular Saffman effect. Phys. Rev. Fluids 3 (7), 074303.CrossRefGoogle Scholar
Venditti, J., Dietrich, W., Nelson, P., Wydzga, M., Fadde, J. & Sklar, L. 2010 Mobilization of coarse surface layers in gravel-bedded rivers by finer gravel bed load. Water Resour. Res. 46.CrossRefGoogle Scholar
Wiederseiner, S., Andreini, N., Epely-Chauvin, G., Moser, G., Monnereau, M.L., Gray, J.M. & Ancey, C. 2011 Experimental investigation into segregating granular flows down chutes. Phys. Fluids 23, 013301.CrossRefGoogle Scholar
Woodhouse, M.J., Thornton, A.R., Johnson, C.G., Kokelaar, B.P. & Gray, J.M.N.T. 2012 Segregation-induced fingering instabilities in granular free-surface flows. J. Fluid Mech. 709, 543580.CrossRefGoogle Scholar