Published online by Cambridge University Press: 26 April 2006
A matched-asymptotic analysis has been carried out for an axisymmetric convection cell in the case of stress-free boundaries. This problem differs from that of two-dimensional convection rolls mainly through the special role played by the central plume. The radius, of order ε, of the latter depends on the Rayleigh number R through the relationship $\epsilon^4(-\ln \epsilon) = R^{\frac{2}{3}}$. The plume velocity is independent of height at lowest order and its magnitude exceeds by a factor (− ln ε)½ the strength, of order $R^{\frac{2}{3}}$, of the core flow. As a result of these properties the central plume is governed by advection, in contrast to the perimeter plume which is affected by conduction as well. This asymmetry is reflected in the different thickness of the horizontal thermal boundary layers and gives rise to the deviation of the core temperature from the mean value of the top and bottom temperatures. This deviation is positive (negative) for the case of a falling (rising) central plume. While the core flow is driven mainly by the perimeter plume the fraction of the heat flux carried by the central plume is always above three-quarters and increases as the radius-to-height-ratio λ decreases.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.