Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T23:38:08.249Z Has data issue: false hasContentIssue false

Autonomous propulsion of nanorods trapped in an acoustic field

Published online by Cambridge University Press:  20 July 2017

Jesse F. Collis
Affiliation:
School of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
Debadi Chakraborty
Affiliation:
School of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
John E. Sader*
Affiliation:
School of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
*
Email address for correspondence: jsader@unimelb.edu.au

Abstract

Acoustic fields in a liquid medium can trap and suspend small particles at their pressure nodes. Recent measurements demonstrate that nanorods immersed in these fields generate autonomous propulsion, with their direction and speed controlled by both the particle’s shape and density distribution. Specifically, slender nanorods with an asymmetric density distribution about their geometric centre are observed to move steadily with their low density end leading the motion; particle geometry exerts an equally significant and potentially opposing effect. In this article, we investigate the physical mechanisms underlying this combined density/shape induced phenomenon by developing a simple yet rigorous mathematical framework for axisymmetric particles. This only requires solution of the (linear) unsteady Stokes equations, which can be performed numerically or analytically. The theory holds for all particle shapes, particle aspect ratios (length/width) and acoustic frequencies. It is applied to slender dumbbell-shaped particles and asymmetric nanorods – these provide model systems to investigate the competing effects governing propulsion. This shows that geometric and density asymmetries in the particle generate axial jets that can produce motion in either direction, depending on the relative strengths of these asymmetries and the acoustic Reynolds number (dimensionless frequency). Strikingly, the propulsion direction is found to reverse with increasing frequency, an effect that is yet to be reported experimentally. The general theory and mechanism described here enable the a priori design and fabrication of nano-motors in fluid for transport of small-scale payloads and robotic applications.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, S., Gentekos, D. T., Fink, C. A. & Mallouk, T. E. 2014 Self-assembly of nanorod motors into geometrically regular multimers and their propulsion by ultrasound. ACS Nano 8 (11), 1105311060.Google Scholar
Ahmed, S., Wang, W., Bai, L., Gentekos, D. T., Hoyos, M. & Mallouk, T. E. 2016 Density and shape effects in the acoustic propulsion of bimetallic nanorod motors. ACS Nano 10 (4), 47634769.Google Scholar
Barnkob, R., Augustsson, P., Laurell, T. & Bruus, H. 2012 Acoustic radiation-and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane. Phys. Rev. E 86 (5), 056307.Google Scholar
Brenner, H. 1964 The Stokes resistance of an arbitrary particle – II: an extension. Chem. Engng Sci. 19 (9), 599629.Google Scholar
Campuzano, S., Kagan, D., Orozco, J. & Wang, J. 2011 Motion-driven sensing and biosensing using electrochemically propelled nanomotors. Analyst 136 (22), 46214630.CrossRefGoogle ScholarPubMed
Córdova-Figueroa, U. M. & Brady, J. F. 2008 Osmotic propulsion: the osmotic motor. Phys. Rev. Lett. 100 (15), 158303.CrossRefGoogle ScholarPubMed
Eller, A. 1968 Force on a bubble in a standing acoustic wave. J. Acoust. Soc. Am. 43 (1), 170171.Google Scholar
Fattah, Z., Loget, G., Lapeyre, V., Garrigue, P., Warakulwit, C., Limtrakul, J., Bouffier, L. & Kuhn, A. 2011 Straightforward single-step generation of microswimmers by bipolar electrochemistry. Electrochim. Acta 56 (28), 1056210566.Google Scholar
Fischer, P. & Ghosh, A. 2011 Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control. Nanoscale 3 (2), 557563.Google Scholar
Guix, M., Mayorga-Martinez, C. C. & Merkoçi, A. 2014 Nano/micromotors in (bio) chemical science applications. Chem. Rev. 114 (12), 62856322.Google Scholar
Guix, M., Orozco, J., García, M., Gao, W., Sattayasamitsathit, S., Merkoçi, A., Escarpa, A. & Wang, J. 2012 Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil. ACS Nano 6 (5), 44454451.Google Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics. Martinus Nijhoff.Google Scholar
Howse, J. R., Jones, R. A. L., Ryan, A. J., Gough, T., Vafabakhsh, R. & Golestanian, R. 2007 Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99 (4), 048102.CrossRefGoogle ScholarPubMed
Ibele, M., Mallouk, T. E. & Sen, A. 2009 Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem. Intl Ed. Engl. 48 (18), 33083312.Google Scholar
Jiang, H. R., Yoshinaga, N. & Sano, M. 2010 Active motion of a janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105 (26), 268302.Google Scholar
King, L. V. 1934 On the acoustic radiation pressure on spheres. Proc. R. Soc. Lond. A 147 (861), 212240.Google Scholar
Lim, W. P., Yao, K. & Chen, Y. 2007 Alignment of carbon nanotubes by acoustic manipulation in a fluidic medium. J. Phys. Chem. C 111 (45), 1680216807.Google Scholar
Litvak, E., Foster, K. R. & Repacholi, M. H. 2002 Health and safety implications of exposure to electromagnetic fields in the frequency range 300 Hz to 10 MHz. Bioelectromagnetics 23 (1), 6882.Google Scholar
Loget, G. & Kuhn, A. 2011 Electric field-induced chemical locomotion of conducting objects. Nat. Commun. 2, 535.Google Scholar
Nadal, F. & Lauga, E. 2014 Asymmetric steady streaming as a mechanism for acoustic propulsion of rigid bodies. Phys. Fluids 26 (8), 082001.Google Scholar
Oberti, S., Neild, A. & Dual, J. 2007 Manipulation of micrometer sized particles within a micromachined fluidic device to form two-dimensional patterns using ultrasound. J. Acoust. Soc. Am. 121 (2), 778785.Google Scholar
Orozco, J., García-Gradilla, V., D’Agostino, M., Gao, W., Cortés, A. & Wang, J. 2013 Artificial enzyme-powered microfish for water-quality testing. ACS Nano 7 (1), 818824.Google Scholar
Paxton, W. F., Kistler, K. C., Olmeda, C. C., Sen, A., St. Angelo, S. K., Cao, Y., Mallouk, T. E., Lammert, P. E. & Crespi, V. H. 2004 Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126 (41), 1342413431.Google Scholar
Petit, T., Zhang, L., Peyer, K. E., Kratochvil, B. E. & Nelson, B. J. 2011 Selective trapping and manipulation of microscale objects using mobile microvortices. Nano Lett. 12 (1), 156160.Google Scholar
Pozrikidis, C. 1989 A singularity method for unsteady linearized flow. Phys. Fluids A 1 (9), 15081520.Google Scholar
Rao, K. J., Li, F., Meng, L., Zheng, H., Cai, F. & Wang, W. 2015 A force to be reckoned with: a review of synthetic microswimmers powered by ultrasound. Small 11 (24), 28362846.Google Scholar
Riley, N. 1966 On a sphere oscillating in a viscous fluid. Q. J. Mech. Appl. Maths 19 (4), 461472.CrossRefGoogle Scholar
Saha, S. & Stoddart, J. F. 2007 Photo-driven molecular devices. Chem. Soc. Rev. 36 (1), 7792.Google Scholar
Sánchez, S., Soler, L. & Katuri, J. 2015 Chemically powered micro-and nanomotors. Angew. Chem. Intl Ed. Engl. 54 (5), 14141444.Google Scholar
Shi, J., Yazdi, S., Lin, S. S., Ding, X., Chiang, I. K., Sharp, K. & Huang, T. J. 2011 Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Lab on a Chip 11 (14), 23192324.Google Scholar
Sundararajan, S., Lammert, P. E., Zudans, A. W., Crespi, V. H. & Sen, A. 2008 Catalytic motors for transport of colloidal cargo. Nano Lett. 8 (5), 12711276.CrossRefGoogle ScholarPubMed
Tierno, P., Golestanian, R., Pagonabarraga, I. & Sagués, F. 2008 Magnetically actuated colloidal microswimmers. J. Phys. Chem. B 112 (51), 1652516528.Google Scholar
Wang, W., Castro, L. A., Hoyos, M. & Mallouk, T. E. 2012 Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6 (7), 61226132.CrossRefGoogle ScholarPubMed
Wang, W., Duan, W., Zhang, Z., Sun, M., Sen, A. & Mallouk, T. E. 2015 A tale of two forces: simultaneous chemical and acoustic propulsion of bimetallic micromotors. Chem. Commun. 51 (6), 10201023.Google Scholar
Wang, W., Li, S., Mair, L., Ahmed, S., Huang, T. J. & Mallouk, T. E. 2014 Acoustic propulsion of nanorod motors inside living cells. Angew. Chem. Intl Ed. Engl. 53 (12), 32013204.Google Scholar
Wiel, M. K. J., Delden, R. A., Meetsma, A. & Feringa, B. L. 2005 Light-driven molecular motors: stepwise thermal helix inversion during unidirectional rotation of sterically overcrowded biphenanthrylidenes. J. Am. Chem. Soc. 127 (41), 1420814222.Google Scholar
Wu, J., Balasubramanian, S., Kagan, D., Manesh, K. M., Campuzano, S. & Wang, J. 2010 Motion-based DNA detection using catalytic nanomotors. Nat. Commun. 1, 36.Google Scholar
Xu, T., Soto, F., Gao, W., Dong, R., Garcia-Gradilla, V., Magaña, E., Zhang, X. & Wang, J. 2015 Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields. J. Am. Chem. Soc. 137 (6), 21632166.Google Scholar
Ye, Z., Diller, E. & Sitti, M. 2012 Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators. J. Appl. Phys. 112 (6), 064912.Google Scholar