Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T13:05:30.996Z Has data issue: false hasContentIssue false

Analytical and experimental characterization of a miniature calorimetric sensor in a pulsatile flow

Published online by Cambridge University Press:  10 November 2010

H. GELDERBLOM*
Affiliation:
Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
A. VAN DER HORST
Affiliation:
Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
J. R. HAARTSEN
Affiliation:
Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven, The Netherlands
M. C. M. RUTTEN
Affiliation:
Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
A. A. F. VAN DE VEN
Affiliation:
Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
F. N. VAN DE VOSSE
Affiliation:
Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
*
Present address: Physics of Fluids, Department of Applied Physics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands. Email address for correspondence: h.gelderblom@tnw.utwente.nl

Abstract

The behaviour of a miniature calorimetric sensor, which is under consideration for catheter-based coronary-artery-flow assessment, is investigated in both steady and pulsatile tube flows. The sensor is composed of a heating element operated at constant power and two thermopiles that measure flow-induced temperature differences over the sensor surface. An analytical sensor model is developed, which includes axial heat conduction in the fluid and a simple representation of the solid wall, assuming a quasi-steady sensor response to the pulsatile flow. To reduce the mathematical problem, described by a two-dimensional advection–diffusion equation, a spectral method is applied. A Fourier transform is then used to solve the resulting set of ordinary differential equations and an analytical expression for the fluid temperature is found. To validate the analytical model, experiments with the sensor mounted in a tube have been performed in steady and pulsatile water flows with various amplitudes and Strouhal numbers. Experimental results are generally in good agreement with theory and show a quasi-steady sensor response in the coronary-flow regime. The model can therefore be used to optimize the sensor design for coronary-flow assessment.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ackerberg, R. C., Patel, R. D. & Gupta, S. K. 1978 The heat/mass transfer to a finite strip at small Péclet numbers. J. Fluid Mech. 86, 4965.Google Scholar
Clark, C. 1974 Thin film gauges for fluctuating velocity measurements in blood. J. Phys. E: Sci. Instrum. 7, 548556.Google Scholar
Cole, K. D. 2008 Flush-mounted steady-periodic heated film with application to shear-stress measurement. Trans. ASME C: J. Heat Transfer 130 (11), 111601-1111601-10.CrossRefGoogle Scholar
Elwenspoek, M. 1999 Thermal flow micro sensors. In Proceedings of the IEEE Semiconductor Conference, pp. 423–435.Google Scholar
van Herwaarden, A. W., van Duyn, D. C., van Oudheusden, B. W. & Sarro, P. M. 1989 Integrated thermopile sensors. Sens. Actuators A 21–23, 621630.Google Scholar
Incropera, F. P., DeWitt, D. P., Bergman, T. L. & Lavine, A. S. 2007 Introduction to Heat Transfer, 5th edn. John Wiley & Sons.Google Scholar
Lammerink, T. S. J., Tas, N. R., Elwenspoek, M. & Fluitman, J. H. J. 1993 Micro-liquid flow sensor. Sens. Actuators A 37–38, 4550.CrossRefGoogle Scholar
Liepmann, H. W. & Skinner, G. T. 1954 Shearing-stress measurements by use of a heated element. NACA Tech. Note 3268.Google Scholar
Liu, T., Campbell, B. T. & Sullivan, J. P. 1994 Surface temperature of a hot film on a wall in shear flow. Int. J. Heat Mass Transfer 37 (17), 28092814.CrossRefGoogle Scholar
Ma, S. W. & Gerner, F. M. 1993 Forced convection heat transfer from microstructures. Trans. ASME C: J. Heat Transfer 115, 872880.Google Scholar
Menendez, A. N. & Ramaprian, B. R. 1985 The use of flush-mounted hot-film gauges to measure skin friction in unsteady boundary layers. J. Fluid Mech. 161, 139159.Google Scholar
Milnor, W. R. 1989 Hemodynamics, 2nd edn. Williams & Wilkins.Google Scholar
Nerem, R. M., Rumberger, J. A., Gross, D. R., Muir, W. W. & Geiger, G. L. 1976 Hot film coronary artery velocity measurements in horses. Cardiovasc. Res. 10 (3), 301313.Google Scholar
Nguyen, N. T. & Kiehnscherf, R. 1995 Low-cost silicon sensors for mass flow measurement of liquids and gases. Sens. Actuators A 49, 1720.Google Scholar
van Oudheusden, B. W. 1991 The thermal modelling of a flow sensor based on differential convective heat transfer. Sens. Actuators A 29, 93106.Google Scholar
van Oudheusden, B. W. & Huijsing, J. W. 1989 Integrated silicon flow-direction sensor. Sens. Actuators 16, 109119.Google Scholar
Pedley, T. J. 1972 On the forced heat transfer from a hot film embedded in the wall in two-dimensional unsteady flow. J. Fluid Mech. 55, 329357.Google Scholar
Pedley, T. J. 1976 Heat transfer from a hot film in reversing shear flow. J. Fluid Mech. 78, 513534.CrossRefGoogle Scholar
Rebay, M., Padet, J. & Kakaç, S. 2007 Forced convection from a microstructure on a flat plate. Heat Mass Transfer 43, 309317.Google Scholar
Schlichting, H. & Gersten, K. 2000 Boundary-Layer Theory, 8th edn. Springer.Google Scholar
Seed, W. A. & Wood, N. B. 1970 Use of a hot-film velocity probe for cardiovascular studies. J. Phys. E: Sci. Instrum. 3, 377384.Google Scholar
Springer, S. G. 1974 The solution of heat transfer problems by the Wiener–Hopf technique. II. Trailing edge of a hot film. Proc. R. Soc. Lond. A 337 (1610), 395412.Google Scholar
Springer, S. G. & Pedley, T. J. 1973 The solution of heat transfer problems by the Wiener–Hopf technique. I. Leading edge of a hot film. Proc. R. Soc. Lond. A 333 (1594), 347362.Google Scholar
van Steenhoven, A. A. & van de Beucken, F. J. H. M. 1991 Dynamical analysis of electrochemical wall shear rate measurements. J. Fluid Mech. 231, 599614.Google Scholar
Stein, C. F., Johansson, P., Bergh, J., Löfdahl, L., Sen, M. & Gad-el-Hak, M. 2002 An analytical asymptotic solution to a conjugate heat transfer problem. Intl J. Heat Mass Transfer 45, 24852500.Google Scholar
Tardu, F. S. & Pham, C. T. 2005 Response of wall hot-film gages with longitudinal diffusion and heat conduction to the substrate. Trans. ASME C: J. Heat Transfer 127, 812819.Google Scholar
Tonino, P. A. L., de Bruyne, B., Pijls, N. H. J., Siebert, U., Ikeno, F., van 't Veer, M., Klauss, V., Manoharan, G., Engstrøm, T., Oldroyd, K. G., Ver Lee, P. N., MacCarthy, P. A. & Fearon, W. F. 2009 Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N. Engl. J. Med. 360 (3), 112.CrossRefGoogle ScholarPubMed
van 't Veer, M., Geven, M., Rutten, M., van der Horst, A., Aarnoudse, W., Pijls, N. & van de Vosse, F. 2009 Continuous infusion thermodilution for assessment of coronary flow: theoretical background and in vitro validation. Med. Engng Phys. 31, 688694.Google Scholar
Womersley, J. R. 1955 Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553563.Google Scholar