Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T16:27:05.114Z Has data issue: false hasContentIssue false

Analytic reconstruction of a two-dimensional velocity field from an observed diffusive scalar

Published online by Cambridge University Press:  24 May 2019

Arjun Sharma
Affiliation:
Institute for Mechanical Systems, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
Irina I. Rypina
Affiliation:
Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
Ruth Musgrave
Affiliation:
Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
George Haller*
Affiliation:
Institute for Mechanical Systems, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
*
Email address for correspondence: georgehaller@ethz.ch

Abstract

Inverting an evolving diffusive scalar field to reconstruct the underlying velocity field is an underdetermined problem. Here we show, however, that for two-dimensional incompressible flows, this inverse problem can still be uniquely solved if high-resolution tracer measurements, as well as velocity measurements along a curve transverse to the instantaneous scalar contours, are available. Such measurements enable solving a system of partial differential equations for the velocity components by the method of characteristics. If the value of the scalar diffusivity is known, then knowledge of just one velocity component along a transverse initial curve is sufficient. These conclusions extend to the shallow-water equations and to flows with spatially dependent diffusivity. We illustrate our results on velocity reconstruction from tracer fields for planar Navier–Stokes flows and for a barotropic ocean circulation model. We also discuss the use of the proposed velocity reconstruction in oceanographic applications to extend localized velocity measurements to larger spatial domains with the help of remotely sensed scalar fields.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernathey, R. P. & Marshall, J. 2013 Global surface eddy diffusivities derived from satellite altimetry. J. Geophys. Res. 118 (2), 901916.10.1002/jgrc.20066Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bennett, A. F. 2005 Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press.Google Scholar
Clark, D. B., Lenain, L., Feddersen, F., Boss, E. & Guza, R. T. 2014 Aerial imaging of fluorescent dye in the near shore. J. Atmos. Ocean. Technol. 31 (6), 14101421.10.1175/JTECH-D-13-00230.1Google Scholar
Cole, S. T., Wortham, C., Kunze, E. & Owens, W. B. 2015 Eddy stirring and horizontal diffusivity from argo float observations: geographic and depth variability. Geophys. Res. Lett. 42 (10), 39893997.10.1002/2015GL063827Google Scholar
Dahm, W. J., Su, L. K. & Southerland, K. B. 1992 A scalar imaging velocimetry technique for fully resolved four-dimensional vector velocity field measurements in turbulent flows. Phys. Fluids A 4 (10), 21912206.10.1063/1.858461Google Scholar
Fiadeiro, M. E. & Veronis, G. 1984 Obtaining velocities from tracer distributions. J. Phys. Oceanogr. 14 (11), 17341746.10.1175/1520-0485(1984)014<1734:OVFTD>2.0.CO;22.0.CO;2>Google Scholar
Gentemann, C. L., Meissner, T. & Wentz, F. J. 2010 Accuracy of satellite sea surface temperatures at 7 and 11 GHz. IEEE Trans. Geosci. Remote Sens. 48 (3), 10091018.10.1109/TGRS.2009.2030322Google Scholar
Gille, S. T. & Davis, R. E. 1999 The influence of mesoscale eddies on coarsely resolved density: an examination of subgrid-scale parameterization. J. Phys. Oceanogr. 29 (6), 11091123.10.1175/1520-0485(1999)029<1109:TIOMEO>2.0.CO;22.0.CO;2>Google Scholar
Gurarie, D. & Chow, K. W. 2004 Vortex arrays for sinh-Poisson equation of two-dimensional fluids: equilibria and stability. Phys. Fluids 16 (9), 32963305.10.1063/1.1772331Google Scholar
Hally-Rosendahl, K., Feddersen, F., Clark, D. B. & Guza, R. T. 2015 Surfzone to inner-shelf exchange estimated from dye tracer balances. J. Geophys. Res. 120 (9), 62896308.10.1002/2015JC010844Google Scholar
Kelly, K. A. 1989 An inverse model for near-surface velocity from infrared images. J. Phys. Oceanogr. 19 (12), 18451864.10.1175/1520-0485(1989)019<1845:AIMFNS>2.0.CO;22.0.CO;2>Google Scholar
Klocker, A. & Abernathey, R. 2014 Global patterns of mesoscale eddy properties and diffusivities. J. Phys. Oceanogr. 44 (3), 10301046.10.1175/JPO-D-13-0159.1Google Scholar
LaCasce, J. H. 2008 Statistics from Lagrangian observations. Prog. Oceanogr. 77 (1), 129.10.1016/j.pocean.2008.02.002Google Scholar
LaCasce, J. H. & Bower, A. 2000 Relative dispersion in the subsurface north atlantic. J. Mar. Res. 58 (6), 863894.10.1357/002224000763485737Google Scholar
Luettich, R. A. Jr & Westerink, J. J. 1991 A solution for the vertical variation of stress, rather than velocity, in a three-dimensional circulation model. Intl J. Numer. Meth. Fluids 12 (10), 911928.10.1002/fld.1650121002Google Scholar
Lumpkin, R., Treguier, A.-M. & Speer, K. 2002 Lagrangian eddy scales in the northern atlantic ocean. J. Phys. Oceanogr. 32 (9), 24252440.10.1175/1520-0485-32.9.2425Google Scholar
Mallier, R. & Maslowe, S. A. 1993 A row of counter-rotating vortices. Phys. Fluids A 5 (4), 10741075.10.1063/1.858622Google Scholar
Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. 1997 A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 102 (C3), 57535766.10.1029/96JC02775Google Scholar
Marshall, J., Shuckburgh, E., Jones, H. & Hill, C. 2006 Estimates and implications of surface eddy diffusivity in the southern ocean derived from tracer transport. J. Phys. Oceanogr. 36 (9), 18061821.10.1175/JPO2949.1Google Scholar
Matthaeus, W. H., Stribling, W. T., Martinez, D., Oughton, S. & Montgomery, D. 1991 Decaying, two-dimensional, Navier–Stokes turbulence at very long times. Physica D 51 (1-3), 531538.10.1016/0167-2789(91)90259-CGoogle Scholar
McClean, J. L., Poulain, P.-M., Pelton, J. W. & Maltrud, M. E. 2002 Eulerian and Lagrangian statistics from surface drifters and a high-resolution pop simulation in the north atlantic. J. Phys. Oceanogr. 32 (9), 24722491.10.1175/1520-0485-32.9.2472Google Scholar
Melander, M. V., McWilliams, J. C. & Zabusky, N. J. 1987 Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation. J. Fluid Mech. 178, 137159.10.1017/S0022112087001150Google Scholar
Munk, W. H. 1950 On the wind-driven ocean circulation. J. Meteorol. 7 (2), 8093.10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;22.0.CO;2>Google Scholar
Nakamura, M. & Chao, Y. 2000 On the eddy isopycnal thickness diffusivity of the Gent–McWilliams subgrid mixing parameterization. J. Clim. 13 (2), 502510.10.1175/1520-0442(2000)013<0502:OTEITD>2.0.CO;22.0.CO;2>Google Scholar
Okubo, A. 1971 Oceanic diffusion diagrams. In Deep Sea Research and Oceanographic Abstracts, vol. 18, pp. 789802. Pergamon Press.Google Scholar
Orescanin, M. M., Elgar, S. & Raubenheimer, B. 2016 Changes in bay circulation in an evolving multiple inlet system. Cont. Shelf Res. 124, 1322.10.1016/j.csr.2016.05.005Google Scholar
Pedlosky, J. 2013 Geophysical Fluid Dynamics. Springer Science and Business Media.Google Scholar
Roberts, M. J. & Marshall, D. P. 2000 On the validity of downgradient eddy closures in ocean models. J. Geophys. Res. 105 (C12), 2861328627.10.1029/1999JC000041Google Scholar
Rypina, I. I., Kamenkovich, I., Berloff, P. & Pratt, L. J. 2012 Eddy-induced particle dispersion in the near-surface north atlantic. J. Phys. Oceanogr. 42 (12), 22062228.10.1175/JPO-D-11-0191.1Google Scholar
Rypina, I. I., Kirincich, A., Lentz, S. & Sundermeyer, M. 2016 Investigating the eddy diffusivity concept in the coastal ocean. J. Phys. Oceanogr. 46 (7), 22012218.10.1175/JPO-D-16-0020.1Google Scholar
Salmon, R. 1998 Lectures on Geophysical Fluid Dynamics. Oxford University Press.Google Scholar
Schlichtholz, P. 1991 A review of methods for determining absolute velocities of water flow from hydrographic data. Oceanologia 31, 7385.Google Scholar
Slivinski, L. C., Pratt, L. J., Rypina, I. I., Orescanin, M. M., Raubenheimer, B., MacMahan, J. & Elgar, S. 2017 Assimilating Lagrangian data for parameter estimation in a multiple-inlet system. Ocean Model. 113, 131144.10.1016/j.ocemod.2017.04.001Google Scholar
Su, L. K. & Dahm, W. J. 1996 Scalar imaging velocimetry measurements of the velocity gradient tensor field in turbulent flows. i. Assessment of errors. Phys. Fluids 8 (7), 18691882.10.1063/1.868969Google Scholar
Veronis, G. 1986 Comments on ‘Can a tracer field be inverted for velocity?’ J. Phys. Oceanogr. 16 (10), 17271730.10.1175/1520-0485(1986)016<1727:COATFB>2.0.CO;22.0.CO;2>Google Scholar
Wallace, J. M. & Vukoslavčević, P. V. 2010 Measurement of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech. 42, 157181.10.1146/annurev-fluid-121108-145445Google Scholar
Wunsch, C. 1985 Can a tracer field be inverted for velocity? J. Phys. Oceanogr. 15 (11), 15211531.10.1175/1520-0485(1985)015<1521:CATFBI>2.0.CO;22.0.CO;2>Google Scholar
Wunsch, C. 1987 Using transient tracers: the regularization problem. Tellus B 39 (5), 477492.10.3402/tellusb.v39i5.15363Google Scholar
Zhurbas, V. & Oh, I. S. 2004 Drifter-derived maps of lateral diffusivity in the pacific and atlantic oceans in relation to surface circulation patterns. J. Geophys. Res. 109 (C5), doi:10.1029/2003JC002241.Google Scholar