Published online by Cambridge University Press: 17 September 2010
Various studies have suggested that the no-slip condition may not hold for Newtonian liquids flowing over (for the most part) non-wetting surfaces. This paper describes an experimental study of steady Poiseuille flow at various Reynolds numbers up to 0.12 of four different aqueous monovalent electrolyte solutions through naturally hydrophilic and hydrophobically coated fused-silica channels with a depth of 33 μm. The slip lengths for these flows were estimated using a local method based on a new particle velocimetry technique that determines velocities at three different wall-normal distances within the first 400 nm next to the wall. These results are corrected using direct measurements of the near-wall particle distribution, which is highly non-uniform as expected due to repulsive electric double-layer interactions between the 100 nm tracer particles and the wall. In all cases, the slip lengths were not more than 23 nm and for all but one case, zero within their uncertainties. As illustrated here, the standard assumption of uniformly distributed tracers can significantly increase slip length estimates obtained using local methods and near-wall velocity data.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.