Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T05:46:37.813Z Has data issue: false hasContentIssue false

Airfoil in a high amplitude oscillating stream

Published online by Cambridge University Press:  15 March 2016

C. Strangfeld*
Affiliation:
Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205 Berlin, Germany Hermann-Föttinger Institut, Institute of Fluid Dynamics and Technical Acoustics, Technische Universität Berlin, Müller-Breslau-Str. 8, 10623 Berlin, Germany
H. Müller-Vahl
Affiliation:
Hermann-Föttinger Institut, Institute of Fluid Dynamics and Technical Acoustics, Technische Universität Berlin, Müller-Breslau-Str. 8, 10623 Berlin, Germany Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, 32000 Haifa, Israel
C. N. Nayeri
Affiliation:
Hermann-Föttinger Institut, Institute of Fluid Dynamics and Technical Acoustics, Technische Universität Berlin, Müller-Breslau-Str. 8, 10623 Berlin, Germany
C. O. Paschereit
Affiliation:
Hermann-Föttinger Institut, Institute of Fluid Dynamics and Technical Acoustics, Technische Universität Berlin, Müller-Breslau-Str. 8, 10623 Berlin, Germany
D. Greenblatt
Affiliation:
Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, 32000 Haifa, Israel
*
Email address for correspondence: christoph.strangfeld@bam.de

Abstract

A combined theoretical and experimental investigation was carried out with the objective of evaluating theoretical predictions relating to a two-dimensional airfoil subjected to high amplitude harmonic oscillation of the free stream at constant angle of attack. Current theoretical approaches were reviewed and extended for the purposes of quantifying the bound, unsteady vortex sheet strength along the airfoil chord. This resulted in a closed form solution that is valid for arbitrary reduced frequencies and amplitudes. In the experiments, the bound, unsteady vortex strength of a symmetric 18 % thick airfoil at low angles of attack was measured in a dedicated unsteady wind tunnel at maximum reduced frequencies of 0.1 and at velocity oscillations less than or equal to 50 %. With the boundary layer tripped near the leading edge and mid-chord, the phase and amplitude variations of the lift coefficient corresponded reasonably well with the theory. Near the maximum lift coefficient overshoot, the data exhibited an additional high-frequency oscillation. Comparisons of the measured and predicted vortex sheet indicated the existence of a recirculation bubble upstream of the trailing edge which sheds into the wake and modifies the Kutta condition. Without boundary layer tripping, a mid-chord bubble is present that strengthens during flow deceleration and its shedding produces a dramatically different effect. Instead of a lift coefficient overshoot, as per the theory, the data exhibit a significant undershoot. This undershoot is also accompanied by high-frequency oscillations that are characterized by the bubble shedding. In summary, the location of bubble and its subsequent shedding play decisive roles in the resulting temporal aerodynamic loads.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amiet, R. K. 1990 Gust response for flat-plate airfoils and the kutta condition. AIAA J. 28 (10), 17181727.Google Scholar
Anderson, J. D. 2011 Fundamentals of Aerodynamics. McGraw-Hill Education.Google Scholar
Barlas, T. K. & Van Kuik, G. 2010 Review of state of the art in smart rotor control research for wind turbines. Prog. Aerosp. Sci. 46 (1), 127.CrossRefGoogle Scholar
Basu, B. C. & Hancock, G. J. 1978 The unsteady motion of a two-dimensional aerofoil in incompressible inviscid flow. J. Fluid Mech. 87 (01), 159178.CrossRefGoogle Scholar
Birnbaum, W. 1923 Die tragende Wirbelfläche als Hilfsmittel zur Behandlung des ebenen Problems der Tragflügeltheorie. Z. Angew. Math. Mech. 3 (4), 290297.Google Scholar
Boutilier, M. S. H. & Yarusevych, S. 2012 Parametric study of separation and transition characteristics over an airfoil at low reynolds numbers. Exp. Fluids 52 (6), 14911506.Google Scholar
Bross, M. & Rockwell, D. 2014 Flow structure on a simultaneously pitching and rotating wing. J. Fluid Mech. 756, 354383.Google Scholar
Favier, D., Agnes, A., Barbi, C. & Maresca, C. 1988 Combined translation/pitch motion-a new airfoil dynamic stall simulation. J. Aircraft 25 (9), 805814.Google Scholar
Favier, D., Rebont, J. & Maresca, C. 1979 Large-amplitude fluctuations of velocity and incidence of an oscillating airfoil. AIAA J. 17 (11), 12651267.Google Scholar
Gompertz, K., Jensen, C., Kumar, P., Peng, D., Gregory, J. W. & Bons, J. P. 2011 Modification of transonic blowdown wind tunnel to produce oscillating freestream Mach number. AIAA J. 49 (11), 25552563.CrossRefGoogle Scholar
Goodrich, M. & Gorham, J. 2008 Wind tunnels of the western hemisphere. In Federal Research Division Library of Congress, Washington, DC, pp. 8182.Google Scholar
Granlund, K., Monnier, B., Ol, M. & Williams, D. 2014 Airfoil longitudinal gust response in separated vs. attached flows. Phys. Fluids 26 (2), 114.Google Scholar
Granlund, K. O., Ol, M. V. & Bernal, L. P. 2013 Unsteady pitching flat plates. J. Fluid Mech. 733, R5.CrossRefGoogle Scholar
Greenberg, J. M.1947 Airfoil in sinusoidal motion in a pulsating stream. NACA Tech. Rep. TN1326.Google Scholar
Greenblatt, D. 2015 Unsteady low-speed wind tunnel design. In 31st AIAA Aerodynamic Measurement Technonoly & Ground Testing Conference, Dallas, TX.Google Scholar
Greenblatt, D. 2016 Unsteady low-speed wind tunnels. AIAA J. doi:10.2514/1.J054590.CrossRefGoogle Scholar
Greenblatt, D., Kiedaisch, J. & Nagib, H. 2001 Unsteady-pressure corrections in highly attenuated measurements at moderate mach numbers. In 31st AIAA Fluid Dynamics Conference & Exhibit, Anaheim, CA.Google Scholar
Ham, N. D., Bauer, P. H. & Lawrence, T. L. 1974 Wind tunnel generation of sinusoidal lateral and longitudinal gusts by circulation of twin parallel airfoils. NASA Tech. Rep. 75, 2951.Google Scholar
Harding, S. F., Payne, G. S. & Bryden, I. G. 2014 Generating controllable velocity fluctuations using twin oscillating hydrofoils: experimental validation. J. Fluid Mech. 750, 113123.Google Scholar
Isaacs, R. 1945 Airfoil theory for flows of variable velocity. J. Aeronaut. Sci. 12 (1), 113117.CrossRefGoogle Scholar
van Kuik, G. A. M., Micallef, D., Herraez, I., van Zuijlen, A. H. & Ragni, D. 2014 The role of conservative forces in rotor aerodynamics. J. Fluid Mech. 750, 284315.Google Scholar
Leishman, J. G. 2000 Principles of Helicopter Aerodynamics. Cambridge University Press.Google Scholar
Leishman, J. G. 2002 Challenges in modelling the unsteady aerodynamics of wind turbines. In 21st ASME Wind Energy Symposium and the 40th AIAA Aerospace Sciences Meeting, Reno, NV.Google Scholar
Leishman, J. G. & Bagai, A. 1998 Challenges in understanding the vortex dynamics of helicopter rotor wakes. AIAA J. 36 (7), 11301140.Google Scholar
Motta, V., Guardone, A. & Quaranta, G. 2015 Influence of airfoil thickness on unsteady aerodynamic loads on pitching airfoils. J. Fluid Mech. 774, 460487.Google Scholar
Mueller, T. J. 1989 Low Reynolds number aerodynamics. In Proceedings of the Conference Notre Dame, IN, vol. 54. Springer Science & Business Media.Google Scholar
Müller-Vahl, H., Strangfeld, C., Nayeri, C. N., Paschereit, C. O. & Greenblatt, D. 2015 Control of thick airfoil, deep dynamic stall using steady blowing. AIAA J. 53 (2), 277295.Google Scholar
Ol, M. V. 2007 Vortical structures in high frequency pitch and plunge at low Reynolds number. In 37th AIAA Fluid Dynamics Conference and Exhibit, Miami, FL.Google Scholar
Pierce, G. A., Kunz, D. L. & Malone, J. B. 1978 The effect of varying freestream velocity on airfoil dynamic stall characteristics. J. Am. Helicopter Soc. 23 (2), 2733.CrossRefGoogle Scholar
Retelle, J. P., McMichael, J. M. & Kennedy, D. A. 1981 Harmonic optimization of a periodic flow wind tunnel. J. Aircraft 18 (8), 618623.CrossRefGoogle Scholar
Somers, D. M.1997 Design and experimental results for the s825 airfoil. Tech. Rep. National Renewable Energy Laboratory.Google Scholar
Strangfeld, C., Müller-Vahl, H., Nayeri, C. N., Paschereit, C. O. & Greenblatt, D. 2014 Airfoil subjected to high-amplitude free-stream oscillations: theory and experiments. In 7th AIAA Theoretical Fluid Mechanics Conference, AIAA Aviation, Atlanta, GA.Google Scholar
Strangfeld, C., Rumsey, C. L., Müller-Vahl, H., Greenblatt, D., Nayeri, C. N. & Paschereit, C. O. 2015 Unsteady thick airfoil aerodynamics: experiments, computation, and theory. In 45th AIAA Fluid Dynamics Conference, Dallas, TX.Google Scholar
Szumowski, A. P. & Meier, G. 1996 Forced oscillations of airfoil flows. Exp. Fluids 21 (6), 457464.CrossRefGoogle Scholar
Theodorsen, T.1935 General theory of aerodynamic instability and the mechanism of flutter. NACA Tech. Rep. No. 496 pp. 413–433.Google Scholar
Timmer, W. A. 2008 Two-dimensional low-reynolds number wind tunnel results for airfoil naca 0018. Wind Engng 32 (6), 525537.Google Scholar
Wagner, S., Bareiss, R. & Guidati, G. 1996 Wind Turbine Noise. Springer.Google Scholar
van der Wall, B. G.1992 The influence of variable flow velocity on unsteady airfoil behavior. Tech. Rep. DLR-FB 92-22, Braunschweig, Germany.Google Scholar
van der Wall, B. G. & Leishman, J. G. 1994 On the influence of time-varying flow velocity on unsteady aerodynamics. J. Am. Helicopter Soc. 39 (4), 2536.Google Scholar