Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T20:41:39.135Z Has data issue: false hasContentIssue false

Activity-induced migration of viscous droplets on a solid substrate

Published online by Cambridge University Press:  13 January 2023

A. Aggarwal
Affiliation:
Department of Materials Science & Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University , Evanston IL 60208, USA Center for Computation and Theory of Soft Materials, Northwestern University, Evanston IL 60208, USA
E. Kirkinis*
Affiliation:
Department of Materials Science & Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University , Evanston IL 60208, USA Center for Computation and Theory of Soft Materials, Northwestern University, Evanston IL 60208, USA
M. Olvera de la Cruz
Affiliation:
Department of Materials Science & Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University , Evanston IL 60208, USA Center for Computation and Theory of Soft Materials, Northwestern University, Evanston IL 60208, USA
*
Email address for correspondence: kirkinis@northwestern.edu

Abstract

Active matter exploits motion to induce changes in shape and conformation via external input. In this paper, we establish theoretically that viscous liquid droplets containing magnetic nanoparticles with frozen-in magnetic moments, sitting on a solid substrate and surrounded by an ambient gas phase, can deform and migrate under the influence of a magnetic torque. The effect arises because the collective rotation of the magnetic nanoparticles at the liquid–gas interface tilts the droplet away from a symmetric configuration, breaks the reflection symmetry with respect to the centre axis, and leads to a left–right asymmetry of the contact angles. A sufficiently strong magnetic torque leads the contact angles to overcome hysteresis effects leading the droplet to migrate. We develop a general framework to explain how symmetry-breaking affects droplet migration. Thus previous results of droplet spreading and migration can be recovered as special cases. Such droplets can be employed as agents in active surfaces and can move against gravity, chemical and thermal gradients, providing a mechanism that could be utilized by both industry and medicine.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aero, E.L., Bulygin, A.N. & Kuvshinskii, E.V. 1965 Asymmetric hydromechanics. Z.. Angew. Math. Mech. 29 (2), 333346.CrossRefGoogle Scholar
Avron, J.E. 1998 Odd viscosity. J. Stat. Phys. 92 (3–4), 543557.CrossRefGoogle Scholar
Chaves, A. & Rinaldi, C. 2014 Interfacial stress balances in structured continua and free surface flows in ferrofluids. Phys. Fluids 26 (4), 042101.CrossRefGoogle Scholar
Chaves, A., Rinaldi, C., Elborai, S., He, X. & Zahn, M. 2006 Bulk flow in ferrofluids in a uniform rotating magnetic field. Phys. Rev. Lett. 96 (19), 194501.CrossRefGoogle Scholar
Chaves, A., Zahn, M. & Rinaldi, C. 2008 Spin-up flow of ferrofluids: asymptotic theory and experimental measurements. Phys. Fluids 20 (5), 053102.CrossRefGoogle Scholar
Condiff, D.W. & Dahler, J.S. 1964 Fluid mechanical aspects of antisymmetric stress. Phys. Fluids 7 (6), 842854.CrossRefGoogle Scholar
Dahler, J.S. & Scriven, L.E. 1961 Angular momentum of continua. Nature 192, 3637.CrossRefGoogle Scholar
Darhuber, A.A. & Troian, S.M. 2005 Principles of microfluidic actuation by modulation of surface stresses. Annu. Rev. Fluid Mech. 37, 425455.CrossRefGoogle Scholar
Davis, M.J., Gratton, M.B. & Davis, S.H. 2010 Suppressing van der Waals driven rupture through shear. J. Fluid Mech. 661, 522539.CrossRefGoogle Scholar
Davis, S.H. 2002 Interfacial fluid dynamics. In Perspectives in Fluid Dynamics: A Collective Introduction to Current Research (ed. G.K. Batchelor, H.K. Moffatt & M.G. Worster), pp. 1–51. Cambridge University Press.Google Scholar
Driscoll, M. & Delmotte, B. 2019 Leveraging collective effects in externally driven colloidal suspensions: experiments and simulations. Curr. Opin. Colloid Interface Sci. 40, 4257.CrossRefGoogle Scholar
Dussan, E.B. V 1979 On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech. 11 (1), 371400.CrossRefGoogle Scholar
Ehrhard, P. 1993 Experiments on isothermal and non-isothermal spreading. J. Fluid Mech. 257, 463483.CrossRefGoogle Scholar
Ehrhard, P. & Davis, S.H. 1991 Non-isothermal spreading of liquid drops on horizontal plates. J. Fluid Mech. 229, 365388.CrossRefGoogle Scholar
Ganeshan, S. & Abanov, A.G. 2017 Odd viscosity in two-dimensional incompressible fluids. Phys. Rev. Fluids 2 (9), 094101.CrossRefGoogle Scholar
de Gennes, P.G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57 (3), 827.CrossRefGoogle Scholar
Greenspan, H.P. 1978 On the motion of a small viscous droplet that wets a surface. J. Fluid Mech. 84 (1), 125143.CrossRefGoogle Scholar
Hoffman, R.L. 1975 A study of the advancing interface. I. Interface shape in liquid–gas systems. J. Colloid Interface Sci. 50 (2), 228241.CrossRefGoogle Scholar
Kirkinis, E. 2017 Magnetic torque-induced suppression of van-der-Waals-driven thin liquid film rupture. J. Fluid Mech. 813, 9911006.CrossRefGoogle Scholar
Kirkinis, E. & Davis, S.H. 2013 Hydrodynamic theory of liquid slippage on a solid substrate near a moving contact line. Phys. Rev. Lett. 110, 234503.CrossRefGoogle Scholar
Kirkinis, E. & Davis, S.H. 2014 Moffatt vortices induced by the motion of a contact line. J. Fluid Mech. 746, R3.CrossRefGoogle Scholar
Kirkinis, E. & Davis, S.H. 2015 Stabilization mechanisms in the evolution of thin liquid-films. Proc. R. Soc. Lond. A 471, 20150651.Google Scholar
Kirkinis, E., Mason, J. & Olvera de la Cruz, M. 2022 Odd viscosity-induced passivation of Moffatt vortices. J. Fluid Mech. 950, A19.CrossRefGoogle Scholar
Lauga, E., Brenner, M.P. & Stone, H.A. 2007 Microfluidics: the no-slip boundary condition. In Springer Handbook of Experimental Fluid Mechanics (ed. C. Tropea, A.L. Yarin & J.F. Foss), pp. 1219–1240. Springer.CrossRefGoogle Scholar
Li, C., et al. 2020 Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Sci. Rob. 5 (49), eabb9822.CrossRefGoogle ScholarPubMed
Ngan, C.G. & Dussan V, E.B. 1989 On the dynamics of liquid spreading on solid surfaces. J. Fluid Mech. 209, 191226.CrossRefGoogle Scholar
Oron, A., Davis, S.H. & Bankoff, S.G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (3), 931980.CrossRefGoogle Scholar
Rinaldi, C. 2002 Continuum modeling of polarizable systems. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Rinaldi, C. & Zahn, M. 2002 Effects of spin viscosity on ferrofluid flow profiles in alternating and rotating magnetic fields. Phys. Fluids 14 (8), 28472870.CrossRefGoogle Scholar
Schwartz, A.M. & Tejada, S.B. 1972 Studies of dynamic contact angles on solids. J. Colloid Interface Sci. 38 (2), 359375.CrossRefGoogle Scholar
Smith, M.K. 1995 Thermocapillary migration of a two-dimensional liquid droplet on a solid surface. J. Fluid Mech. 294, 209230.CrossRefGoogle Scholar
Tanner, L.H. 1979 The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys. 12 (9), 14731484.CrossRefGoogle Scholar
Torres-Díaz, I. & Rinaldi, C. 2014 Recent progress in ferrofluids research: novel applications of magnetically controllable and tunable fluids. Soft. Matt. 10 (43), 85848602.CrossRefGoogle ScholarPubMed
Wilhelm, S., Tavares, A.J., Dai, Q., Ohta, S., Audet, J., Dvorak, H.F. & Chan, W.C.W. 2016 Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1 (5), 16014.CrossRefGoogle Scholar
Yang, T., Sprinkle, B., Guo, Y., Qian, J., Hua, D., Donev, A., Marr, D.W.M. & Wu, N. 2020 Reconfigurable microbots folded from simple colloidal chains. Proc. Natl Acad. Sci. USA 117 (31), 1818618193.CrossRefGoogle ScholarPubMed
Zahn, M. & Greer, D.R. 1995 Ferrohydrodynamic pumping in spatially uniform sinusoidally time-varying magnetic fields. J. Magn. Magn. Mater. 149 (1), 165173.CrossRefGoogle Scholar