Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T01:31:52.684Z Has data issue: false hasContentIssue false

Absolute instability of plane incompressible jets

Published online by Cambridge University Press:  28 April 2023

Vasily Vedeneev*
Affiliation:
Institute of Mechanics, Lomonosov Moscow State University, Moscow 119192, Russia
Nikolay Nikitin
Affiliation:
Institute of Mechanics, Lomonosov Moscow State University, Moscow 119192, Russia
*
Email address for correspondence: vasily@vedeneev.ru

Abstract

In this paper, the possibility of absolute instability in a plane unidirectional jet is analysed. We consider a parametrized family of velocity profiles with variable inflection point location and shear layer thickness. Using the inviscid saddle-point analysis, we show that absolute instability can occur in the case of a sufficiently low velocity at the inflection point or a sufficiently thin shear layer. Then we proceed to the viscous analysis and find the critical Reynolds numbers separating the zones of convective and absolute instability. We obtained a minimum value $Re = 315$. As an independent verification of the theoretical results, we conduct a direct numerical simulation of the evolution of a localized pulse perturbation in the framework of the linearized Navier–Stokes equations. The calculated absolute/convective instability boundary is in a good agreement with theoretical results of the saddle-point analysis.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balestra, G., Gloor, M. & Kleiser, L. 2015 Absolute and convective instabilities of heated coaxial jet flow. Phys. Fluids 27, 054101.CrossRefGoogle Scholar
Bers, A. 1983 Space–time evolution of plasma instabilities – absolute and convective. In Handbook of Plasma Physics (ed. A.A. Galeev & R.N. Sudan), chap. 3.2, pp. 451–517. North-Holland.Google Scholar
Biancofiore, L. & Gallaire, F. 2011 The influence of shear layer thickness on the stability of confined two-dimensional wakes. Phys. Fluids 23, 034103.CrossRefGoogle Scholar
Biancofiore, L., Gallaire, F. & Pasquetti, R. 2011 Influence of confinement on a two-dimensional wake. J. Fluid Mech. 688, 297320.CrossRefGoogle Scholar
Brevdo, L. 1995 Convectively unstable wave packets in the Blasius boundary layer. Z. Angew. Math. Mech. 75 (6), 423436.CrossRefGoogle Scholar
Briggs, R.J. 1964 Electron–Stream Interaction with Plasmas. MIT.CrossRefGoogle Scholar
Caillol, P. 2008 Absolute and convective instabilities of an inviscid compressible mixing layer: theory and applications. Phys. Fluids 21, 104101.CrossRefGoogle Scholar
Coenen, W., Lesshafft, L., Garnaud, X. & Sevilla, A. 2017 Global instability of low-density jets. J. Fluid Mech. 820, 187207.CrossRefGoogle Scholar
Coenen, W., Sevilla, A. & Sánchez, A.L. 2008 Absolute instability of light jets emerging from circular injector tubes. Phys. Fluids 20, 074104.CrossRefGoogle Scholar
Deissler, R.J. 1987 The convective nature of instability in plane Poiseuille flow. Phys. Fluids 30, 23032305.CrossRefGoogle Scholar
Delbende, I. & Chomaz, J.-M. 1998 Nonlinear convective/absolute instabilities in parallel two-dimensional wakes. Phys. Fluids 10, 27242736.CrossRefGoogle Scholar
Delbende, I., Chomaz, J.-M. & Huerre, P. 1998 Absolute/convective instabilities in the Batchelor vortex: a numerical study of the linear impulse response. J. Fluid Mech. 355, 229254.CrossRefGoogle Scholar
Demange, S., Chazot, O. & Pinna, F. 2020 Local analysis of absolute instability in plasma jets. J. Fluid Mech. 903, A51.CrossRefGoogle Scholar
Drazin, P.G. & Reid, W.H. 2004 Hydrodynamic Stability. Cambridge University Press.CrossRefGoogle Scholar
Gareev, L.R., Zayko, J.S., Chicherina, A.D., Trifonov, V.V., Reshmin, A.I. & Vedeneev, V.V. 2022 Experimental validation of inviscid linear stability theory applied to an axisymmetric jet. J. Fluid Mech. 934, A3.CrossRefGoogle Scholar
Hallberg, M.P., Srinivasan, V., Gorse, P. & Strykowski, P.J. 2007 Suppression of global modes in low-density axisymmetric jets using coflow. Phys. Fluids 19, 014102.CrossRefGoogle Scholar
Healey, J.J. 2009 Destabilizing effects of confinement on homogeneous mixing layers. J. Fluid Mech. 623, 241271.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P.A. 1985 Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151168.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P.A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
Iordanskii, S.V. & Kulikovskii, A.G. 1966 The absolute stability of some plane parallel flows at high Reynolds numbers. Sov. Phys. JETP 22 (4), 915918.Google Scholar
Jackson, T.L. & Grosch, C.E. 1990 Absolute/convective instabilities and the convective Mach number in a compressible mixing layer. Phys. Fluids A 2 (6), 949954.CrossRefGoogle Scholar
Jendoubi, S. & Strykowski, P.J. 1994 Absolute and convective instability of axisymmetric jets with external flow. Phys. Fluids 6 (9), 30003009.CrossRefGoogle Scholar
Juniper, M.P. 2006 The effect of confinement on the stability of two-dimensional shear flows. J. Fluid Mech. 565, 171195.CrossRefGoogle Scholar
Juniper, M.P. 2007 The full impulse response of two-dimensional jet/wake flows and implications for confinement. J. Fluid Mech. 590, 163185.CrossRefGoogle Scholar
Juniper, M.P. 2008 The effect of confinement on the stability of non-swirling round jet/wake flows. J. Fluid Mech. 605, 227252.CrossRefGoogle Scholar
Kulikovskii, A.G. 1966 On the stability of homogeneous states. Z. Angew. Math. Mech. 30 (1), 180187.CrossRefGoogle Scholar
Kulikovskii, A.G. 2006 The global instability of uniform flows in non-one-dimensional regions. Z. Angew. Math. Mech. 70 (2), 229234.CrossRefGoogle Scholar
Kyle, D.M. & Sreenivasan, K.R. 1993 The instability and breakdown of a round variable-density jet. J. Fluid Mech. 249, 619664.CrossRefGoogle Scholar
Lee, L.-S. & Morris, P.J. 1997 Absolute instability in a supersonic shear layer and mixing control. J. Propul. Power 13 (6), 763767.CrossRefGoogle Scholar
Lesshafft, L. & Huerre, P. 2010 Linear impulse response in hot round jets. Phys. Fluids 19, 024102.CrossRefGoogle Scholar
Lesshafft, L. & Marquet, O. 2010 Optimal velocity and density profiles for the onset of absolute instability in jets. J. Fluid Mech. 662, 398408.CrossRefGoogle Scholar
Li, L.K.B. & Juniper, M.P. 2013 Lock-in and quasiperiodicity in a forced hydrodynamically self-excited jet. J. Fluid Mech. 726, 624655.CrossRefGoogle Scholar
Monkewitz, P.A. 1988 The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers. Phys. Fluids 31, 9991006.CrossRefGoogle Scholar
Monkewitz, P.A., Bechert, D.W., Barsikow, B. & Lehmann, B. 1990 Self-excited oscillations and mixing in a heated round jet. J. Fluid Mech. 213, 611639.CrossRefGoogle Scholar
Monkewitz, P.A. & Sohn, K.D. 1988 Absolute instability in hot jets. AIAA J. 26, 911916.CrossRefGoogle Scholar
Nikitin, N. 2006 Finite-difference method for incompressible Navier–Stokes equations in arbitrary orthogonal curvilinear coordinates. J. Comput. Phys. 217, 759781.CrossRefGoogle Scholar
Pavithran, S. & Redekopp, L.G. 1989 The absolute–convective transition in subsonic mixing layers. Phys. Fluids A 1 (10), 17361739.CrossRefGoogle Scholar
Pier, B. 2002 On the frequency selection of finite-amplitude vortex shedding in the cylinder wake. J. Fluid Mech. 458, 407417.CrossRefGoogle Scholar
Rees, S.J. & Juniper, M.P. 2010 The effect of confinement on the stability of viscous planar jets and wakes. J. Fluid Mech. 656, 309336.CrossRefGoogle Scholar
Shikina, I.S. 1987 Asymptotic behavior of localized perturbations in free shear layers. Fluid Dyn. 22, 173179.CrossRefGoogle Scholar
Shmidt, P.J. & Hennigson, D.S. 2001 Stability and Transition in Shear Flows. Springer.Google Scholar
Strykowski, P.J., Krothapalli, A. & Jendoubi, S. 1996 The effect of counterflow on the development of compressible shear layers. J. Fluid Mech. 308, 6396.CrossRefGoogle Scholar
Vedeneev, V. & Zayko, J. 2018 On absolute instability of free jets. J. Phys.: Conf. Ser. 1129, 012037.Google Scholar
Zayko, J., Teplovodskii, S., Chicherina, A., Vedeneev, V. & Reshmin, A. 2018 Formation of free round jets with long laminar regions at large Reynolds numbers. Phys. Fluids 30, 043603.CrossRefGoogle Scholar