Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T01:09:19.883Z Has data issue: false hasContentIssue false

Walking droplets interacting with single and double slits

Published online by Cambridge University Press:  01 December 2017

Giuseppe Pucci
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA The Hatter Department of Marine Technologies, University of Haifa, Haifa, Israel
Daniel M. Harris
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA School of Engineering, Brown University, Providence, RI 02912, USA
Luiz M. Faria
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
John W. M. Bush*
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: bush@math.mit.edu

Abstract

Couder & Fort (Phys. Rev. Lett., vol. 97, 2006, 154101) demonstrated that when a droplet walking on the surface of a vibrating bath passes through a single or a double slit, it is deflected due to the distortion of its guiding wave field. Moreover, they suggested the build-up of statistical diffraction and interference patterns similar to those arising for quantum particles. Recently, these results have been revisited (Andersen et al., Phys. Rev. E, vol. 92 (1), 2015, 013006; Batelaan et al., J. Phys.: Conf. Ser., vol. 701 (1), 2016, 012007) and contested (Andersen et al. 2015; Bohr, Andersen & Lautrup, Recent Advances in Fluid Dynamics with Environmental Applications, 2016, Springer, pp. 335–349). We revisit these experiments with a refined experimental set-up that allows us to systematically characterize the dependence of the dynamical and statistical behaviour on the system parameters. The system behaviour is shown to depend strongly on the amplitude of the vibrational forcing: as this forcing increases, a transition from repeatable to unpredictable trajectories arises. In all cases considered, the system behaviour is dominated by a wall effect, specifically the tendency for a drop to walk along a path that makes a fixed angle relative to the plane of the slits. While the three dominant central peaks apparent in the histograms of the deflection angle reported by Couder & Fort (2006) are evident in some of the parameter regimes considered in our study, the Fraunhofer-like dependence of the number of peaks on the slit width is not recovered. In the double-slit geometry, the droplet is influenced by both slits by virtue of the spatial extent of its guiding wave field. The experimental behaviour is well captured by a recently developed theoretical model that allows for a robust treatment of walking droplets interacting with boundaries. Our study underscores the importance of experimental precision in obtaining reproducible data.

Type
JFM Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharonov, Y., Cohen, E., Colombo, F., Landsberger, T., Sabadini, I., Struppa, D. C. & Tollaksen, J. 2017 Finally making sense of the double-slit experiment. Proc. Natl Acad. Sci. USA 114 (25), 64806485.Google Scholar
Andersen, A., Madsen, J., Reichelt, C., Ahl, S. R., Lautrup, B., Ellegaard, C., Levinsen, M. T. & Bohr, T. 2015 Double-slit experiment with single wave-driven particles and its relation to quantum mechanics. Phys. Rev. E 92 (1), 013006.Google Scholar
Bach, R., Pope, D., Liou, S.-H. & Batelaan, H. 2013 Controlled double-slit electron diffraction. New J. Phys. 15, 033018.Google Scholar
Batelaan, H., Jones, E., Huang, W. C.-W. & Bach, R. 2016 Momentum exchange in the electron double-slit experiment. J. Phys.: Conf. Ser. 701 (1), 012007.Google Scholar
Bechhoefer, J., Ego, B., Manneville, S. & Johnson, B. 1995 An experimental study of the onset of parametrically pumped surface waves in viscous fluids. J. Fluid Mech. 288, 325350.CrossRefGoogle Scholar
Bell, J. S. 1987 Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press.Google Scholar
Benjamin, T. B. & Ursell, F. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225, 505515.Google Scholar
Blanchette, F. 2016 Modeling the vertical motion of drops bouncing on a bounded fluid reservoir. Phys. Fluids 28 (3), 032104.CrossRefGoogle Scholar
Bohr, T., Andersen, A. & Lautrup, B. 2016 Bouncing droplets, pilot-waves, and quantum mechanics. In Recent Advances in Fluid Dynamics with Environmental Applications (ed. Klapp, J. et al. ), pp. 335349. Springer.Google Scholar
Born, M. & Wolf, E. 2000 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. CUP Archive.Google Scholar
de Broglie, L. 1924 Recherches sur la théorie des quanta. Masson, Paris.Google Scholar
de Broglie, L. 1926 Interference and corpuscular light. Nature 118, 441442.Google Scholar
de Broglie, L. 1960 Non-Linear Wave Mechanics: A Causal Interpretation. Elsevier.Google Scholar
de Broglie, L. 1987 Interpretation of quantum mechanics by the double solution theory. Ann. Fond. Louis Broglie (on-line) 12, 123.Google Scholar
Bush, J. W. M. 2015 Pilot-wave hydrodynamics. Annu. Rev. Fluid Mech. 47, 269292.CrossRefGoogle Scholar
Carmigniani, R., Lapointe, S., Symon, S. & McKeon, B. J. 2014 Influence of a local change of depth on the behavior of walking oil drops. Exp. Therm. Fluid Sci. 54, 237246.Google Scholar
Couder, Y. & Fort, E. 2006 Single-particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97, 154101.Google Scholar
Couder, Y. & Fort, E. 2012 Probabilities and trajectories in a classical wave–particle duality. J. Phys.: Conf. Ser. 361, 012001.Google Scholar
Couder, Y., Protière, S., Fort, E. & Boudaoud, A. 2005 Walking and orbiting droplets. Nature 437, 208.Google Scholar
Davisson, C. & Germer, L. H. 1927 The scattering of electrons by a single crystal of nickel. Nature 119 (2998), 558560.Google Scholar
Dubertrand, R., Hubert, M., Schlagheck, P., Vandewalle, N., Bastin, T. & Martin, J. 2016 Scattering theory of walking droplets in the presence of obstacles. New J. Phys. 18 (11), 113037.Google Scholar
Durey, M. & Milewski, P. A. 2017 Faraday wave–droplet dynamics: discrete-time analysis. J. Fluid Mech. 821, 296329.Google Scholar
Eddi, A., Fort, E., Moisy, F. & Couder, Y. 2009 Unpredictable tunneling of a classical wave–particle association. Phys. Rev. Lett. 102, 240401.Google Scholar
Eddi, A., Moukhtar, J., Perrard, S., Fort, E. & Couder, Y. 2012 Level splitting at macroscopic scale. Phys. Rev. Lett. 108, 264503.Google Scholar
Eddi, A., Sultan, E., Moukhtar, J., Fort, E., Rossi, M. & Couder, Y. 2011 Information stored in Faraday waves: the origin of path memory. J. Fluid Mech. 674, 433463.Google Scholar
Eddi, A., Terwagne, D., Fort, E. & Couder, Y. 2008 Wave propelled ratchets and drifting rafts. Europhys. Lett. 82, 44001.Google Scholar
Einstein, A. 1905 Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 17 (6), 132148.CrossRefGoogle Scholar
Faraday, M. 1831 On the forms and states of fluids on vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 121, 319340.Google Scholar
Faria, L. M. 2017 A model for Faraday pilot waves over variable topography. J. Fluid Mech. 811, 5166.Google Scholar
Feynman, R. P., Leighton, R. B. & Sands, M. 1963 The Feynman Lectures on Physics. Addison Wesley.Google Scholar
Filoux, B., Hubert, M., Schlagheck, P. & Vandewalle, N. 2017 Walking droplets in linear channels. Phys. Rev. Fluids 2 (1), 013601.Google Scholar
Fort, E., Eddi, A., Boudaoud, A., Moukhtar, J. & Couder, Y. 2010 Path-memory induced quantization of classical orbits. Proc. Natl Acad. Sci. USA 107 (41), 1751517520.CrossRefGoogle Scholar
Gilet, T. 2014 Dynamics and statistics of wave–particle interactions in a confined geometry. Phys. Rev. E 90 (5), 052917.Google Scholar
Gilet, T. & Bush, J. W. M. 2012 Droplets bouncing on a wet, inclined surface. Phys. Fluids 24 (12), 122103.Google Scholar
Grimaldi, F. M. 1665 Physico-mathesis de lumine, coloribus, et iride, aliisque adnexis libri duo. Kessinger Publishing, LLC (26 August 2009).Google Scholar
Harris, D.2015 The pilot-wave dynamics of walking droplets in confinement. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Harris, D. M. & Bush, J. W. M. 2014 Droplets walking in a rotating frame: from quantized orbits to multimodal statistics. J. Fluid Mech. 739, 444464.Google Scholar
Harris, D. M. & Bush, J. W. M. 2015 Generating uniaxial vibration with an electrodynamic shaker and external air bearing. J. Sound Vib. 334, 255269.Google Scholar
Harris, D. M., Liu, T. & Bush, J. W. M. 2015 A low-cost, precise piezoelectric droplet-on-demand generator. Exp. Fluids 56 (4), 17.Google Scholar
Harris, D. M., Moukhtar, J., Fort, E., Couder, Y. & Bush, J. W. M. 2013 Wavelike statistics from pilot-wave dynamics in a circular corral. Phys. Rev. E 88, 011001.Google Scholar
Jönsson, C. 1961 Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten. Z. Phys. A 161 (4), 454474.Google Scholar
Kapitza, P. L. & Dirac, P. A. M. 1933 The reflection of electrons from standing light waves. Math. Proc. Camb. Phil. Soc. 29, 297300.Google Scholar
Kocsis, S., Braverman, B., Ravets, S., Stevens, M. J., Mirin, R. P., Shalm, L. K. & Steinberg, A. M. 2011 Observing the average trajectories of single photons in a two-slit interferometer. Science 332 (6034), 11701173.Google Scholar
Labousse, M., Oza, A. U., Perrard, S. & Bush, J. W. M. 2016a Pilot-wave dynamics in a harmonic potential: quantization and stability of circular orbits. Phys. Rev. E 93 (3), 033122.Google Scholar
Labousse, M., Perrard, S., Couder, Y. & Fort, E. 2014 Build-up of macroscopic eigenstates in a memory-based constrained system. New J. Phys. 16 (11), 113027.Google Scholar
Labousse, M., Perrard, S., Couder, Y. & Fort, E. 2016b Self-attraction into spinning eigenstates of a mobile wave source by its emission back-reaction. Phys. Rev. E 94 (4), 063017.Google Scholar
Milewski, P. A., Galeano-Rios, C. A., Nachbin, A. & Bush, J. W. M. 2015 Faraday pilot-wave dynamics: modelling and computation. J. Fluid Mech. 778, 361388.Google Scholar
Moláček, J. & Bush, J. W. M. 2013a Drops bouncing on a vibrating bath. J. Fluid Mech. 727, 582611.Google Scholar
Moláček, J. & Bush, J. W. M. 2013b Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory. J. Fluid Mech. 727, 612647.Google Scholar
Nachbin, A., Milewski, P. A. & Bush, J. W. M. 2017 Tunneling with a hydrodynamic pilot-wave model. Phys. Rev. Fluids 2 (3), 034801.Google Scholar
Oza, A. U., Harris, D. M., Rosales, R. R. & Bush, J. W. M. 2014a Pilot-wave dynamics in a rotating frame: on the emergence of orbital quantization. J. Fluid Mech. 744, 404429.Google Scholar
Oza, A. U., Rosales, R. R. & Bush, J. W. M. 2013 A trajectory equation for walking droplets: hydrodynamic pilot-wave theory. J. Fluid Mech. 737, 552570.Google Scholar
Oza, A. U., Wind-Willassen, Ø., Harris, D. M., Rosales, R. R. & Bush, J. W. M. 2014b Pilot-wave hydrodynamics in a rotating frame: exotic orbits. Phys. Fluids 26 (8), 082101.Google Scholar
Perrard, S., Labousse, M., Miskin, M., Fort, E. & Couder, Y. 2014 Self-organization into quantized eigenstates of a classical wave-driven particle. Nat. Commun. 5, 3219.Google Scholar
Planck, M. 1901 Ueber das Gesetz der Energieverteilung im Normalspectrum. Ann. Phys. 4, 553.Google Scholar
Protière, S., Boudaoud, A. & Couder, Y. 2006 Particle–wave association on a fluid interface. J. Fluid Mech. 554, 85108.Google Scholar
Pucci, G., Sáenz, P. J., Faria, L. M. & Bush, J. W. M. 2016 Non-specular reflection of walking droplets. J. Fluid Mech. 804, R3.Google Scholar
Sáenz, P. J. S., Cristea-Platon, T. & Bush, J. W. M. 2017 Statistical projection effects in a hydrodynamic pilot-wave system. Nat. Phys. (in press) doi:10.1038/s41567-017-0003-x.Google Scholar
Taylor, G. I. 1909 Interference fringes with feeble light. Proc. Camb. Phil. Soc. 15, 114115.Google Scholar
Tonomura, A., Endo, J., Matsuda, T. & Kawasaki, T. 1989 Demonstration of single-electron buildup of an interference pattern. Am. J. Phys. 57 (2), 117120.Google Scholar
Tsuchiya, Y., Inuzuka, E., Kurono, T. & Hosoda, M. 1985 Photon-counting imaging and its application. Adv. Electron. El. Phys. 64, 2131.Google Scholar
Wind-Willassen, Ø., Moláček, J., Harris, D. M. & Bush, J. W. M. 2013 Bouncing and walking drops: exotic and mixed modes. Phys. Fluids 25, 082002.Google Scholar

Pucci et al. supplementary movie 1

See Movie captions pdf for description

Download Pucci et al. supplementary movie 1(Video)
Video 5.2 MB
Supplementary material: PDF

Pucci et al. supplementary movie captions

Movie descriptions

Download Pucci et al. supplementary movie captions(PDF)
PDF 77.3 KB

Pucci et al. supplementary movie 2

See Movie captions pdf for description

Download Pucci et al. supplementary movie 2(Video)
Video 9.6 MB

Pucci et al. supplementary movie 3

See Movie captions pdf for description

Download Pucci et al. supplementary movie 3(Video)
Video 1.9 MB