Published online by Cambridge University Press: 01 March 2004
The velocity field within a steady toroidal vortex is found for arbitrary mean core radius and section ellipticity. The problem is solved by transforming to coordinates that define invariant sets. The method allows the properties of the coordinate system metric tensor to be exploited in the continuity equation in order to obtain the solution. The vorticity is found to decrease monotonically with distance from the symmetry axis. For a given outer radius and outer perimeter velocity, the circulation of the vortex ring can be either smaller or larger than that of Hill's spherical vortex.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.