Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T20:59:11.276Z Has data issue: false hasContentIssue false

Two-dimensional compressible viscous flow around a circular cylinder

Published online by Cambridge University Press:  23 November 2015

Daniel Canuto
Affiliation:
Department of Mechanical Engineering, Florida A&M/Florida State University, Tallahassee, FL 32310, USA
Kunihiko Taira*
Affiliation:
Department of Mechanical Engineering, Florida A&M/Florida State University, Tallahassee, FL 32310, USA
*
Email address for correspondence: ktaira@fsu.edu

Abstract

Direct numerical simulation is performed to study compressible viscous flow around a circular cylinder. The present study considers two-dimensional shock-free continuum flow by varying the Reynolds number between 20 and 100 and the free-stream Mach number between 0 and 0.5. The results indicate that compressibility effects elongate the near wake for cases above and below the critical Reynolds number for two-dimensional flow under shedding. The wake elongation becomes more pronounced as the Reynolds number approaches this critical value. Moreover, we determine the growth rate and frequency of linear instability for cases above the critical Reynolds number. From the analysis, it is observed that the frequency of the Bénard–von Kármán vortex street in the time-periodic fully saturated flow increases from the dominant unstable frequency found from the linear stability analysis as the Reynolds number increases from its critical value, even for the low range of Reynolds numbers considered. We also find that the compressibility effects reduce the growth rate and dominant frequency in the linear growth stage. Semi-empirical functional relationships for the growth rate and the dominant frequency in linearized flow around the cylinder in terms of the Reynolds number and free-stream Mach number are presented.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.

References

Åkervik, E., Brandt, L., Henningson, D. S., Hœpffner, J., Marxen, O. & Schlatter, P. 2006 Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18, 068102.Google Scholar
Behara, S. & Mittal, S. 2010 Wake transition in flow past a circular cylinder. Phys. Fluids 22, 114104.Google Scholar
Bénard, H. 1908 Formation de centres de giration à l’arrière d’un obstacle en mouvemènt. C. R. Acad. Sci. 147, 839842.Google Scholar
Bird, G. A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press.CrossRefGoogle Scholar
Bishop, R. E. D. & Hassan, A. Y. 1964 The lift and drag forces on a circular cylinder in a flowing fluid. Proc. R. Soc. Lond. A 277 (1368), 3250.Google Scholar
Brés, G. A. & Colonius, T. 2008 Three-dimensional instabilities in compressible flow over open cavities. J. Fluid Mech. 599, 309339.Google Scholar
Brés, G. A., Nichols, J. W., Lele, S. K. & Ham, F. E. 2012 Towards best practices for jet noise predictions with unstructured large eddy simulations. In 42nd AIAA Fluid Dynamics Conference New Orleans.Google Scholar
Coutanceau, M. & Bouard, R. 1977 Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. J. Fluid Mech. 79 (2), 231256.Google Scholar
Delany, N. K. & Sorenson, N. S.1953 Low-speed drag of cylinders of various shapes. NACA Tech. Rep. 3038.Google Scholar
Drela, M. 1992 Transonic low-Reynolds number airfoils. J. Aircraft 29 (6), 11061113.Google Scholar
Dus̆ek, J., Le Gal, P. & Fraunié, P. 1994 A numerical and theoretical study of the first Hopf bifurcation in a cylinder wake. J. Fluid Mech. 264, 5980.Google Scholar
Finn, R. K. 1953 Determination of the drag on a cylinder at low Reynolds numbers. J. Appl. Phys. 24 (6), 771773.Google Scholar
Fornberg, B. 1980 A numerical study of steady viscous flow past a circular cylinder. J. Fluid Mech. 98, 819855.Google Scholar
Freund, J. B. 1997 Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound. AIAA J. 35 (4), 740742.Google Scholar
Fung, Y. C. 1960 Experiments on the flow past a circular cylinder at very high Reynolds number. J. Aero. Space Sci. 27, 801814.Google Scholar
Gerrard, J. H. 1961 An experimental investigation of the oscillating lift and drag of a circular cylinder shedding turbulent vortices. J. Fluid Mech. 11 (2), 244256.Google Scholar
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.CrossRefGoogle Scholar
Glauert, H. 1928 The effect of compressibility on the lift of an aerofoil. Proc. R. Soc. Lond. A 118 (779), 113119.Google Scholar
Gorokhovski, M. & Herrmann, M. 2008 Modeling primary atomization. Annu. Rev. Fluid Mech. 40, 343366.Google Scholar
Karagiozis, K., Kamakoti, R. & Pantano, C. 2010 A low numerical dissipation immersed interface method for the compressible Navier–Stokes equations. J. Comput. Phys. 229, 701727.Google Scholar
von Kármán, T. 1911 Über den mechanismus des widerstandes, den ein bewegter körper in einer flus̈seigkeit afahrt. Gott. Nachr. 509517.Google Scholar
Khalighi, Y., Nichols, J. W., Ham, F., Lele, S. K. & Moin, P. 2011 Unstructured large eddy simulation for prediction of noise issued from turbulent jets in various configurations. In 17th AIAA/CEAS Aeroacoustics Conference.Google Scholar
Kumar, B., Kottaram, J. J., Singh, A. K. & Mittal, S. 2009 Global stability analysis of flow past a cylinder with centerline symmetry. J. Fluid Mech. 632, 273300.Google Scholar
Lindsey, W. F.1937 Drag of cylinders of simple shapes. NACA Tech. Rep. 619.Google Scholar
Linnick, M. N. & Fasel, H. F. 2005 A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains. J. Comput. Phys. 204, 157192.Google Scholar
Macha, J. M. 1977 Drag of circular cylinders at transonic Mach numbers. J. Aircraft 14, 605607.Google Scholar
Mallock, A. 1907 On the resistance of air. Proc. R. Soc. Lond. A 79, 262265.Google Scholar
Marsden, J. E. & McCracken, M. 1976 The Hopf Bifurcation and Its Applications, Applied Mathematical Sciences, vol. 19. Springer.Google Scholar
Meiron, D. I., Saffman, P. G. & Schatzman, J. C. 1984 The linear two-dimensional stability of inviscid vortex streets of finite-cored vortices. J. Fluid Mech. 147, 187212.CrossRefGoogle Scholar
Munday, P. M., Taira, K., Suwa, T., Numata, D. & Asai, K. 2015 Nonlinear lift on a triangular airfoil in low-Reynolds-number compressible flow. J. Aircraft 52 (3), 924931.Google Scholar
Nagai, H., Asai, K., Numata, D. & Suwa, T.2013 Characteristics of low-Reynolds number airfoils in a Mars wind tunnel. AIAA Paper 2013-0073.Google Scholar
Noack, B. R., Afanasiev, K., Morzynski, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.Google Scholar
Norberg, C. 2001 Flow around a circular cylinder: aspects of fluctuating lift. J. Fluids Struct. 15 (3), 459469.Google Scholar
Okamoto, M.2005 An experimental study in aerodynamic characteristics of steady and unsteady airfoils at low Reynolds number. PhD thesis, Nihon University.Google Scholar
Provansal, M., Mathis, C. & Boyer, L. 1987 Bénard–von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 122.Google Scholar
Rayleigh, Lord 1879 Acoustical observations. Phil. Mag. J. Sci. 7 (42), 149162.Google Scholar
Roshko, A.1954 On the development of turbulent wakes from vortex streets. NACA Tech. Rep. 1191.Google Scholar
Roshko, A. 1961 Experiments on the flow past a circular cylinder at very high Reynolds number. J. Fluid Mech. 10 (3), 345356.Google Scholar
Saffman, P. G. & Schatzman, J. C. 1982 Stability of a vortex street of finite vortices. J. Fluid Mech. 117, 171185.Google Scholar
Sanada, S. & Matsumoto, S. 1992 Full scale measurements of wind force action on and response of a 200 m concrete chimney. J. Wind Engng. Ind. Aerodyn. 43, 21652176.CrossRefGoogle Scholar
Sengupta, T. K., Singh, N. & Suman, V. K. 2010 Dynamical system approach to instability of flow past a circular cylinder. J. Fluid Mech. 656, 82115.Google Scholar
Shinjo, J. & Umemura, A. 2010 Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation. Intl J. Multiphase Flow 36, 513532.Google Scholar
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333358.Google Scholar
Strouhal, V. 1878 On one particular way of tone generation. Ann. Phys. Leipzig 3 5, 216251.Google Scholar
Strykowski, P. J. & Sreenivasan, K. R. 1990 On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers. J. Fluid Mech. 218, 71107.Google Scholar
Suwa, T., Nose, K., Numata, D., Nagai, H. & Asai, K.2012 Compressibility effects on airfoil aerodynamics at low Reynolds number, AIAA Paper 2012-3029.Google Scholar
Taira, K. & Colonius, T. 2007 The immersed boundary method: a projection approach. J. Comput. Phys. 225, 21182137.Google Scholar
Taneda, S. 1956 Experimental investigation of the wakes behind cylinders and plates at low Reynolds numbers. J. Phys. Soc. Japan 11, 302307.Google Scholar
Tritton, D. J. 1959 Experiments on the flow past a circular cylinder at low Reynolds number. J. Fluid Mech. 6, 547567.Google Scholar
Wieselsberger, C. von 1921 Neuere feststellungen über die gesetze des flüssigkeits-und luftwiderstandes. Phys. Z. 22 (11), 321328.Google Scholar
Williamson, C. H. K. 1988a Defining a universal and continuous Strouhal–Reynolds number relationship for the laminar vortex shedding of a circular cylinder. Phys. Fluids 31 (10), 27422744.Google Scholar
Williamson, C. H. K. 1988b The existence of two stages in the transition to three-dimensionality of a cylinder wake. Phys. Fluids 31, 31653168.Google Scholar
Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.CrossRefGoogle Scholar
Zdravkovich, M. M. 1997 Flow Around Circular Cylinders: Fundamentals, Oxford Science Publications, vol. 1. Oxford University Press.Google Scholar