Published online by Cambridge University Press: 25 November 2020
The influence of the different thermal boundary conditions at the bottom and top plates on the dynamics and statistics of a turbulent Rayleigh–Bénard convection flow is studied in three-dimensional direct numerical simulations. The flow evolves in a closed cylinder with an aspect ratio of $\varGamma =1/2$ in air for a Prandtl number
$Pr=0.7$ and a Rayleigh number
$Ra=10^7$ and in the liquid metal alloy GaInSn at
$Pr=0.033$ and
$Ra=10^7$,
$10^8$. We apply for each case three different thermal boundary conditions at the top and bottom of the fluid volume while leaving the solid sidewall thermally insulated: (i) fixed temperature, (ii) fixed heat flux and (iii) conjugate heat transfer which couples the temperature and heat flux in the working fluid to that of the finitely thick, solid plates enclosing the turbulent flow. The global heat transfer is enhanced by up to 19 % for the conjugate heat transfer case in comparison to that of isothermal plates. The differences decrease for the lower of the two Prandtl numbers; they remain generally smaller for the global turbulent momentum transfer. Mean temperature profiles and root mean square velocity fluctuations are surprisingly weakly affected. The largest difference appears for the distribution of local thermal boundary scales when the cases of fixed temperature and of conjugate heat transfer are compared. We also discuss our results in view to experimental uncertainties in liquid metal experiments.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.