Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T02:44:41.133Z Has data issue: false hasContentIssue false

Study of polygonal water bells: inertia-dominated thin-film flows over microtextured surfaces

Published online by Cambridge University Press:  13 March 2013

Emilie Dressaire*
Affiliation:
Department of Engineering, Trinity College, Hartford, CT 06106, USA
Laurent Courbin
Affiliation:
Institut de Physique de Rennes, UMR CNRS 6251, Campus Beaulieu, Université Rennes 1, 35042 Rennes, France
Adrian Delancy
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
Marcus Roper
Affiliation:
Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA
Howard A. Stone
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: emilie.dressaire@trincoll.edu

Abstract

Microtextured surfaces are commonly used to study complex hydrodynamic phenomena such as spreading and splashing of liquid droplets. However, although surface topography is known to modify near-surface flow, there is no theory able to quantitatively predict the dramatic changes in dynamics of liquid spreading and splashing. Here, we investigate experimentally water bells formed on micropatterned surfaces in order to characterize the hydrodynamics of inertia-dominated flows through regular porous layers. Water bells are self-suspended catenary-shaped liquid films created when a jet impinges on a horizontal disc called an impactor. We show that the presence of micrometre-sized posts regularly arranged on the impactor results in a decrease of the water bell radius and the loss of axisymmetry as open water bells adopt polygonal shapes. We introduce a simple model that captures the main features of the inertia-dominated flow and reveals the role of the hydrodynamic interactions between neighbouring posts. In addition to their applications for tunable jet atomization, these polygonal sheets provide a paradigmatic system for understanding inertia-dominated flow in porous media.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashgriz, N. 2011 Handbook of Atomization and Sprays: Theory and Applications. Springer.Google Scholar
Batchelor, G. K. 2010 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Boussinesq, J. 1869a Théories des expériences de Savart, sur la forme que prend une veine liquide apres s’être choquée contre un plan circulaire i. C. R. Acad. Sci. Paris 69, 4548.Google Scholar
Boussinesq, J. 1869b Théories des expériences de Savart, sur la forme que prend une veine liquide apres s’être choquée contre un plan circulaire ii. C. R. Acad. Sci. Paris 69, 128132.Google Scholar
Bremond, N. 2003 Stabilité et Atomisation Des Nappes Liquides. PhD thesis, Université de Provence, Aix-Marseille I.Google Scholar
Bremond, N., Clanet, C. & Villermaux, E. 2007 Atomization of undulating liquid sheets. J. Fluid Mech. 585, 421456.CrossRefGoogle Scholar
Buckingham, R. & Bush, J. W. M. 2001 Fluid polygons. Phys. Fluids 13, S10.Google Scholar
Clanet, C. 2001 Dynamics and stability of water bells. J. Fluid Mech. 430, 111147.Google Scholar
Clanet, C. 2007 Waterbells and liquid sheets. Annu. Rev. Fluid Mech. 39, 469496.Google Scholar
Clanet, C. & Villermaux, E. 2002 Life of a smooth liquid sheet. J. Fluid Mech. 462, 307340.CrossRefGoogle Scholar
Courbin, L., Bird, J. C. & Stone, H. A. 2006 Splash and anti-splash: observation and design. Chaos 16, 41102.Google Scholar
Dressaire, E., Courbin, L., Crest, J. & Stone, H. A. 2010 Inertia dominated thin-film flows over microdecorated surfaces. Phys. Fluids 22, 073602.Google Scholar
Ergun, S. 1952 Fluid flow though packed columns. Chem. Engng Prog. 48, 8994.Google Scholar
Juarez, G., Gastopoulos, T., Zhang, Y., Siegel, M. L. & Arratia, P. E. 2012 Splash control of drop impacts with geometric targets. Phys. Rev. E 85, 026319.Google Scholar
Koch, D. L. & Ladd, A. J. C. 1997 Moderate Reynolds number flows through periodic and random arrays of aligned cylinders. J. Fluid Mech. 349, 3166.Google Scholar
Lance, G. N. & Perry, R. L. 1953 Water bells. Proc. Phys. Soc. B 66, 10671072.Google Scholar
Lhuissier, H. & Villermaux, E. 2012 Crumpled water bells. J. Fluid Mech. 693, 508540.Google Scholar
McDonald, J. C. & Whitesides, G. M. 2002 Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491499.Google Scholar
Savart, F. 1833a Mémoire sur le choc d’une veine liquide lancée contre un plan circulaire. Ann. Chim. 54, 5687.Google Scholar
Savart, F. 1833b Suite du mémoire sur le choc d’une veine liquide lancée contre un plan circulaire. Ann. de Chim. 54, 113145.Google Scholar
Sharman, B., Lien, F. S., Davidson, L. & Norberg, C. 2005 Numerical predictions of low Reynolds number flows over two tandem circular cylinders. Intl J. Numer. Meth. Fluids 47, 423447.Google Scholar
Taylor, G. 1959 The dynamics of thin sheets of fluid. I. Water bells. Proc. R. Soc. Lond. A 253 (1274), 289295.Google Scholar
Tsai, P., Hendrix, M. H. W., Dijkstra, R. R. M., Shui, L. & Lohse, D. 2011 Microscopic structure influencing macroscopic splash at high Weber number. Soft Matt. 7, 11325.CrossRefGoogle Scholar
Watson, E. J. 1964 The radial spread of a liquid jet over a horizontal plane. J. Fluid Mech. 20, 481499.Google Scholar
Xu, L. 2007 Liquid drop splashing on smooth, rough, and textured surfaces. Phys. Rev. E 75, 056316.CrossRefGoogle ScholarPubMed