Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T00:05:54.707Z Has data issue: false hasContentIssue false

Streaming-potential phenomena in the thin-Debye-layer limit. Part 3. Shear-induced electroviscous repulsion

Published online by Cambridge University Press:  26 November 2015

Ory Schnitzer*
Affiliation:
Department of Mathematics, Imperial College London, Queen’s Gate 180, London SW7 2AZ, UK
Ehud Yariv
Affiliation:
Department of Mathematics, Technion – Israel Institute of Technology, Haifa 32000, Israel
*
Email address for correspondence: o.schnitzer@imperial.ac.uk

Abstract

We employ the moderate-Péclet-number macroscale model developed in part 2 of this sequence (Schnitzer et al., J. Fluid Mech., vol. 704, 2012, pp. 109–136) towards the calculation of electroviscous forces on charged solid particles engendered by an imposed relative motion between these particles and the electrolyte solution in which they are suspended. In particular, we are interested in the kinematic irreversibility of these forces, stemming from the diffusio-osmotic slip which accompanies the salt-concentration polarisation induced by that imposed motion. We illustrate the electroviscous irreversibility using two prototypic problems, one involving side-by-side sedimentation of two spherical particles, and the other involving a force-free spherical particle suspended in the vicinity of a planar wall and exposed to a simple shear flow. We focus on the pertinent limit of near-contact configurations, where use of lubrication approximations provides closed-form expressions for the leading-order lateral repulsion. In this approximation scheme, the need to solve the advection–diffusion equation governing the salt-concentration polarisation is circumvented.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, B. M. & Prieve, D. C. 1987 A hydrodynamic technique for measurement of colloidal forces. Langmuir 3 (5), 788795.Google Scholar
Bike, S. G., Lazarro, L. & Prieve, D. C. 1995 Electrokinetic lift of a sphere moving in slow shear flow parallel to a wall I. Experiment. J. Colloid Interface Sci. 175 (2), 411421.Google Scholar
Bike, S. G. & Prieve, D. C. 1990 Electrohydrodynamic lubrication with thin double layers. J. Colloid Interface Sci. 136 (1), 95112.Google Scholar
Bike, S. G. & Prieve, D. C. 1995 Electrokinetic lift of a sphere moving in slow shear flow parallel to a wall II. Theory. J. Colloid Interface Sci. 175 (2), 422434.Google Scholar
Booth, F. 1950 The electroviscous effect for suspensions of solid spherical particles. Proc. R. Soc. Lond. A 203 (1075), 533551.Google Scholar
Booth, F. 1954 Sedimentation potential and velocity of solid spherical particles. J. Chem. Phys. 22, 19561968.CrossRefGoogle Scholar
Bowen, W. R. & Jenner, F. 1995 Electroviscous effects in charged capillaries. J. Colloid Interface Sci. 173 (2), 388395.Google Scholar
Cooley, M. D. A. & O’Neill, M. E. 1968 On the slow rotation of a sphere about a diameter parallel to a nearby plane wall. J. Inst. Math. Applics. 4, 163173.Google Scholar
Cox, R. G. 1997 Electroviscous forces on a charged particle suspended in a flowing liquid. J. Fluid Mech. 338, 134.CrossRefGoogle Scholar
Cox, R. G. & Brenner, H. 1967 The slow motion of a sphere through a viscous fluid towards a plane surface – II. Small gap widths, including inertial effects. Chem. Engng Sci. 22, 17531777.CrossRefGoogle Scholar
Doi, M. & Makino, M. 2008 Electrokinetic boundary condition compatible with the Onsager reciprocal relation in the thin double layer approximation. J. Chem. Phys. 128, 044715.Google Scholar
Elton, G. A. H. 1948 Electroviscosity. I. The flow of liquids between surfaces in close proximity. Proc. R. Soc. Lond. A 194 (1037), 259.Google Scholar
Elton, G. A. H. 1949 Electroviscosity. III. Sedimentation phenomena in ionic liquids. Proc. R. Soc. Lond. A 197 (1051), 568572.Google Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall.Google Scholar
Hinch, E. J. 1991 Perturbation Methods. Cambridge University Press.CrossRefGoogle Scholar
Hinch, E. J. & Sherwood, J. D. 1983 Primary electroviscous effect in a suspension of spheres with thin double layers. J. Fluid Mech. 132, 337347.Google Scholar
Israelachvili, J. N. 2010 Intermolecular and Surface Forces. Academic Press.Google Scholar
Jeffrey, D. J. 1996 Some basic principles in interaction calculations. In Sedimentation of Small Particles in a Viscous Fluid (ed. Torry, E. M.), chap. 4, pp. 97124. Computational Mechanics.Google Scholar
Leal, L. G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press.Google Scholar
Lever, D. A. 1979 Large distortion of the electric double layer around a charged particle by a shear flow. J. Fluid Mech. 92 (03), 421433.Google Scholar
Ohshima, H., Healy, T. W., White, L. R. & O’Brien, R. W. 1984 Sedimentation velocity and potential in a dilute suspension of charged spherical colloidal particles. J. Chem. Soc. Faraday Trans. 80 (10), 12991317.Google Scholar
O’Neill, M. E. 1968 A sphere in contact with a plane wall in a slow linear shear flow. Chem. Engrg Sci. 23 (11), 12931298.Google Scholar
O’Neill, M. E. 1969 On asymmetrical slow viscous flows caused by the motion of two equal spheres almost in contact. Math. Proc. Cambridge Philos. Soc. 65 (2), 543556.CrossRefGoogle Scholar
O’Neill, M. E. & Stewartson, K. 1967 On the slow motion of a sphere parallel to a nearby plane wall. J. Fluid Mech. 27, 705724.Google Scholar
Rice, C. L. & Whitehead, R. 1965 Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 69 (11), 40174024.Google Scholar
Russel, W. B. 1976 Low-shear limit of the secondary electroviscous effect. J. Colloid Interface Sci. 55 (3), 590604.CrossRefGoogle Scholar
Russel, W. B. 1978a Bulk stresses due to deformation of the electrical double layer around a charged sphere. J. Fluid Mech. 85 (04), 673683.Google Scholar
Russel, W. B. 1978b The rheology of suspensions of charged rigid spheres. J. Fluid Mech. 85 (02), 209232.Google Scholar
Saville, D. A. 1977 Electrokinetic effects with small particles. Annu. Rev. Fluid Mech. 9, 321337.Google Scholar
Schnitzer, O., Frankel, I. & Yariv, E. 2012a Shear-induced electrokinetic lift at large Péclet numbers. Math. Model. Nat. Phenom. 7 (04), 6481.Google Scholar
Schnitzer, O., Frankel, I. & Yariv, E. 2012b Streaming-potential phenomena in the thin-Debye-layer limit. Part 2. Moderate-Péclet-number theory. J. Fluid Mech. 704, 109136.Google Scholar
Schnitzer, O., Frankel, I. & Yariv, E. 2013 Electrokinetic flows about conducting drops. J. Fluid Mech. 722, 394423.Google Scholar
Schnitzer, O., Khair, A. & Yariv, E. 2011 Irreversible electrokinetic repulsion in zero-Reynolds-number sedimentation. Phys. Rev. Lett. 107, 278301.Google Scholar
Schnitzer, O. & Yariv, E. 2014 Nonlinear electrophoresis at arbitrary field strengths: small-Dukhin-number analysis. Phys. Fluids 26 (12), 122002.Google Scholar
Stigter, D. 1980 Sedimentation of highly charged colloidal spheres. J. Phys. Chem. 84 (21), 27582762.Google Scholar
Tabatabaei, S. M., van de Ven, T. G. M. & Rey, A. D. 2006 Electroviscous sphere-wall interactions. J. Colloid Interface Sci. 301 (1), 291301.CrossRefGoogle ScholarPubMed
van de Ven, T. G. M., Warszynski, P. & Dukhin, S. S. 1993 Electrokinetic lift of small particles. J. Colloid Interface Sci. 157 (2), 328331.Google Scholar
Warszynski, P. & van de Ven, T. G. M. 1990 Electroviscous forces. Faraday Discuss. Chem. Soc. 90, 313321.Google Scholar
Warszynski, P. & van de Ven, T. G. M. 1991 Effect of electroviscous drag on the coagulation and deposition of electrically charged colloidal particles. Adv. Colloid Interface Sci. 36, 3363.Google Scholar
Warszynski, P., Wu, X. & van de Ven, T. G. M. 1998 Electrokinetic lift force for a charged particle moving near a charged wall – a modified theory and experiment. Colloid Surf. A 140 (1–3), 183198.Google Scholar
Watterson, I. G. & White, L. R 1981 Primary electroviscous effect in suspensions of charged spherical particles. J. Chem. Soc. Faraday Trans. 2 77 (7), 11151128.CrossRefGoogle Scholar
Yariv, E., Schnitzer, O. & Frankel, I. 2011 Streaming-potential phenomena in the thin-Debye-layer limit. Part 1. General theory. J. Fluid Mech. 685, 306334.Google Scholar