Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T09:49:52.730Z Has data issue: false hasContentIssue false

Stratified tidal flow over a tall ridge above and below the turning latitude

Published online by Cambridge University Press:  29 March 2016

R. C. Musgrave
Affiliation:
Scripps Institution of Oceanography, University of California San Diego, CA 92037, USA
R. Pinkel
Affiliation:
Scripps Institution of Oceanography, University of California San Diego, CA 92037, USA
J. A. MacKinnon
Affiliation:
Scripps Institution of Oceanography, University of California San Diego, CA 92037, USA
Matthew R. Mazloff
Affiliation:
Scripps Institution of Oceanography, University of California San Diego, CA 92037, USA
W. R. Young
Affiliation:
Scripps Institution of Oceanography, University of California San Diego, CA 92037, USA

Abstract

The interaction of the barotropic tide with a tall, two-dimensional ridge is examined analytically and numerically at latitudes where the tide is subinertial, and contrasted to when the tide is superinertial. When the tide is subinertial, the energy density associated with the response grows with latitude as both the oscillatory along-ridge flow and near-ridge isopycnal displacement become large. Where $f\neq 0$, nonlinear processes lead to the formation of along-ridge jets, which become faster at high latitudes. Dissipation and mixing is larger, and peaks later in the tidal cycle when the tide is subinertial compared with when the tide is superinertial. Mixing occurs mainly on the flanks of the topography in both cases, though a superinertial tide may additionally generate mixing above topography arising from convective breaking of radiating waves.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baines, P. G. 1982 On internal tide generation models. Deep-Sea Res. A 29 (3), 307338.Google Scholar
Bell, T. H. 1975 Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech. 67 (4), 705722.Google Scholar
Brink, K. H. 1989 The effect of stratification on seamount-trapped waves. Deep-Sea Res. A 36 (6), 825844.Google Scholar
Brink, K. H. 1990 On the generation of seamount-trapped waves. Deep-Sea Res. A 37 (10), 15691582.Google Scholar
Brink, K. H. 2011 Topographic rectification in a stratified ocean. J. Mar. Res. 69, 483499.CrossRefGoogle Scholar
Chapman, D. C. 1989 Enhanced subinertial diurnal tides over isolated topographic features. Deep-Sea Res. A 36 (6), 815824.Google Scholar
Chen, C. & Beardsley, R. C. 1995 A numerical study of stratified tidal rectification over finite-amplitude banks. Part 1: symmetric banks. J. Phys. Oceanogr. 25, 20902110.Google Scholar
Codiga, D. L. 1997 Physics and observational signatures of free, forced, and frictional stratified seamount-trapped waves. J. Geophys. Res. 102 (C10), 2300923024.CrossRefGoogle Scholar
Daru, V. & Tenaud, C. 2004 High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations. J. Comput. Phys. 193 (2), 563594.Google Scholar
Di Lorenzo, E., Young, W. R. & Llewellyn Smith, S. G. 2006 Numerical and analytical estimates of M 2 tidal conversion at steep oceanic ridges. J. Phys. Oceanogr. 36 (6), 10721084.CrossRefGoogle Scholar
Egbert, G. D. & Ray, R. D. 2003 Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys. Res. Lett. 30 (17), doi:10.1029/2003GL017676.CrossRefGoogle Scholar
Flexas, M. M., Schodlok, M. P., Padman, L., Menemenlis, D. & Orsi, A. H. 2015 Role of tides on the formation of the Antarctic slope Front at the Weddell–Scotia confluence. J. Geophys. Res. Oceans 120, 36583680.Google Scholar
Gerkema, T. & Shrira, V. I. 2005 Near-inertial waves in the ocean: beyond the ‘traditional approximation’. J. Fluid Mech. 529, 195219.Google Scholar
Green, J. A. M. & Nycander, J. 2013 A comparison of tidal conversion parameterizations for tidal models. J. Phys. Oceanogr. 43 (1), 104119.Google Scholar
Hasumi, H. & Suginohara, N. 1999 Effects of locally enhanced vertical diffusivity over rough bathymetry on the world ocean circulation. J. Geophys. Res. 104 (C10), 2336723374.Google Scholar
Huthnance, J. M. 1973 Tidal current asymmetries over the Norfolk Sandbanks. Estuar. Coast. Mar. Sci. 1, 8999.Google Scholar
Huthnance, J. M. 1978 On coastal trapped waves: analysis and numerical calculation by inverse iteration. J. Phys. Oceanogr. 8 (1), 7492.Google Scholar
Jayne, S. R. 2009 The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr. 39 (7), 17561775.Google Scholar
Kang, D. & Fringer, O. B. 2012 Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr. 42 (2), 272290.Google Scholar
Klymak, J., Legg, S. & Pinkel, R. 2010 A simple parameterization of turbulent tidal mixing near supercritical topography. J. Phys. Oceanogr. 40, 20592074.Google Scholar
Kunze, E. & Toole, J. M. 1997 Tidally driven vorticity, diurnal shear, and turbulence atop Fieberling Seamount. J. Phys. Oceanogr. 27, 26632693.Google Scholar
Llewellyn Smith, S. G. & Young, W. R. 2003 Tidal conversion at a very steep ridge. J. Fluid Mech. 495, 175191.Google Scholar
Loder, J. W. 1980 Topographic rectification of tidal currents on the sides of Georges Bank. J. Phys. Oceanogr. 10, 13991416.Google Scholar
Longuet-Higgins, M. S. 1968 On the trapping of waves along a discontinuity of depth in a rotating ocean. J. Fluid Mech. 31 (3), 417434.Google Scholar
Maas, L. R. M. 2011 Topographies lacking tidal conversion. J. Fluid Mech. 684, 524.Google Scholar
Maas, L. R. M. & Zimmerman, J. T. F. 1989a Tide-topography interactions in a stratified shelf sea. I. Basic equations for quasi-nonlinear internal tides. Geophys. Astrophys. Fluid Dyn. 45, 136.Google Scholar
Maas, L. R. M. & Zimmerman, J. T. F. 1989b Tide-topography interactions in a stratified shelf sea. II. Bottom trapped internal tides and baroclinic residual currents. Geophys. Astrophys. Fluid Dyn. 45, 3769.Google Scholar
Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. 1997 A finite volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 102 (C3), 57535766.Google Scholar
Melet, A., Venayagamoorthy, S. W., Legg, S. & Polzin, K. L. 2013 Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr. 43 (3), 602615.Google Scholar
Müller, M. 2013 On the space-and time-dependence of barotropic-to-baroclinic tidal energy conversion. Ocean Model. 72, 242252.Google Scholar
Munk, W. H. & Wunsch, C. 1998 Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I 45 (12), 19772010.CrossRefGoogle Scholar
Musgrave, R. C., Mackinnon, J. A., Pinkel, R., Waterhouse, A. F. & Nash, J. D. 2016 Tidally driven processes leading to nearfield turbulence in a channel at the crest of the Mendocino Escarpment. J. Phys. Oceanogr. (in press).Google Scholar
Nakamura, T., Awaji, T., Hatayama, T., Akitomo, K., Takizawa, T., Kono, T., Kawasaki, Y. & Fukasawa, M. 2000 The generation of large-amplitude unsteady lee waves by subinertial K 1 tidal flow: a possible vertical mixing mechanism in the Kuril Straits. J. Phys. Oceanogr. 30 (7), 16011621.Google Scholar
Nakamura, T., Isoda, Y., Mitsudera, H., Takagi, S. & Nagasawa, M. 2010 Breaking of unsteady lee waves generated by diurnal tides. Geophys. Res. Lett. 37, L04602.Google Scholar
Osafune, S. & Yasuda, I. 2013 Remote impacts of the 18.6 year period modulation of localized tidal mixing in the North Pacific. J. Geophys. Res. 118, 31283137.Google Scholar
Padman, L., Plueddemann, A. J., Muench, R. D. & Pinkel, R. 1992 Diurnal tides near the Yermak Plateau. J. Geophys. Res. 97 (C8), 1263912652.Google Scholar
Rapaka, N. R., Gayen, B. & Sarkar, S. 2013 Tidal conversion and turbulence at a model ridge: direct and large eddy simulations. J. Fluid Mech. 715, 181209.Google Scholar
Rhines, P. B. 1970 Edge, bottom, and Rossby waves in a rotating stratified fluid. J. Geophys. Astrophys. Fluid Dyn. 1 (3–4), 273302.Google Scholar
Simmons, H. L., Jayne, S. R., St Laurent, L. C. & Weaver, A. J. 2004 Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Model. 6 (3–4), 245263.Google Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. Mon. Weath. Rev. 91 (3), 99164.Google Scholar
St Laurent, L. C., Stringer, S., Garrett, C. J. R. & Perrault-Joncas, D. 2003 The generation of internal tides at abrupt topography. Deep-Sea Res. I 50 (8), 9871003.Google Scholar
Winters, K. B. & Armi, L. 2013 The response of a continuously stratified fluid to an oscillating flow past an obstacle. J. Fluid Mech. 727, 83118.Google Scholar