Hostname: page-component-68c7f8b79f-gx2m9 Total loading time: 0 Render date: 2025-12-20T12:14:24.639Z Has data issue: false hasContentIssue false

Spray behaviour from non-swirling to swirling gas jet in coaxial atomisation

Published online by Cambridge University Press:  12 December 2025

Santanu Kumar Sahoo*
Affiliation:
Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, 38000 Grenoble, France
Yu Wei
Affiliation:
Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, 38000 Grenoble, France
Nathanaël Machicoane*
Affiliation:
Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, 38000 Grenoble, France
*
Corresponding authors: Santanu Kumar Sahoo, santanuksahoo1@gmail.com; Nathanaël Machicoane, nathanael.machicoane@univ-grenoble-alpes.fr
Corresponding authors: Santanu Kumar Sahoo, santanuksahoo1@gmail.com; Nathanaël Machicoane, nathanael.machicoane@univ-grenoble-alpes.fr

Abstract

The present study focuses on the influence of gas swirl on the spray behaviour from a two-fluid coaxial atomiser with high gas-to-liquid dynamic pressure ratios $M$ by varying both the liquid Reynolds number ${\textit{Re}}_l$ and the gas Weber number ${\textit{We}}_g$. The investigations identify the deviations of the carrier phase velocity fields, droplet distribution, and dispersion when swirl is introduced to the gas phase compared with the non-swirling conditions. The changes in the axial, radial and tangential velocities of the continuous phase due to the introduction of swirl are highlighted while retaining a self-similar behaviour. The slip velocity of the large droplets in swirling sprays is negative, unlike the known positive value for non-swirling sprays. The shape of the radial profiles of the mean drop size is investigated along ${\textit{We}}_g$, notably revealing an inflection point for swirling sprays at high-${\textit{We}}_g$ values. A global assessment of the drop size uncovered that swirl leads to its increase for low $M$ while assisting spray formation at high $M$. Additionally, the radial profiles of axial fluxes for swirling sprays have a wider bell-shaped curve compared with non-swirling sprays at high $M$, unlike the off-centre maxima found for low $M$. However, the mentioned dependencies of drop sizes and fluxes cannot be determined by $M$ solely for intermediate gas-to-liquid momentum ratios ($23\lt M\lt 46$), and vary with ${\textit{Re}}_l$ and ${\textit{We}}_g$. In addition, the response of at least the mean droplets at the edge of the spray to the large gas eddies shows a linear relation with swirl intensity.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Acharya, A.S., Deevi, S., Dhivyaraja, K., Tangirala, A.K. & Panchagnula, M.V. 2021 Spatio-temporal microstructure of sprays: data science-based analysis and modelling. J. Fluid Mech. 912, A19.10.1017/jfm.2020.1116CrossRefGoogle Scholar
Ade, S.S., Kirar, P.K., Chandrala, L.D. & Sahu, K.C. 2023 Droplet size distribution in a swirl airstream using in-line holography technique. J. Fluid Mech. 954, A39.10.1017/jfm.2022.1028CrossRefGoogle Scholar
Albrecht, H.-E., Borys, M., Damaschke, N., Tropea, C., Albrecht, H.-E., Borys, M., Damaschke, N. & Tropea, C. 2003 Laser Doppler and Phase Doppler Measurement Techniques. Springer.10.1007/978-3-662-05165-8CrossRefGoogle Scholar
Angriman, S., Ferran, A., Zapata, F., Cobelli, P.J., Obligado, M. & Mininni, P.D. 2022 Clustering in laboratory and numerical turbulent swirling flows. J. Fluid Mech. 948, A30.10.1017/jfm.2022.713CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42 (1), 111133.10.1146/annurev.fluid.010908.165243CrossRefGoogle Scholar
Beér, J.M. & Chigier, N.A. 1972 Combustion aerodynamics.Google Scholar
Billant, P., Chomaz, J.-M. & Huerre, P. 1998 Experimental study of vortex breakdown in swirling jets. J. Fluid Mech. 376, 183219.10.1017/S0022112098002870CrossRefGoogle Scholar
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54 (1), 159189.10.1146/annurev-fluid-030121-021103CrossRefGoogle Scholar
Chigier, N. & Farago, Z. 1992 Morphological classification of disintegration of round liquid jets in a coaxial air stream. Atomiz. Spray. 2 (2), 137153.10.1615/AtomizSpr.v2.i2.50CrossRefGoogle Scholar
Chung, J.N. & Troutt, T.R. 1988 Simulation of particle dispersion in an axisymmetric jet. J. Fluid Mech. 186, 199222.10.1017/S0022112088000102CrossRefGoogle Scholar
Crow, S.C. & Champagne, F.H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48 (3), 547591.10.1017/S0022112071001745CrossRefGoogle Scholar
Delon, A., Cartellier, A. & Matas, J.-P. 2018 Flapping instability of a liquid jet. Phys. Rev. Fluids 3 (4), 043901.10.1103/PhysRevFluids.3.043901CrossRefGoogle Scholar
Dhivyaraja, K., Gaddes, D., Freeman, E., Tadigadapa, S. & Panchagnula, M.V. 2019 Dynamical similarity and universality of drop size and velocity spectra in sprays. J. Fluid Mech. 860, 510543.10.1017/jfm.2018.893CrossRefGoogle Scholar
Dimotakis, P.E., Miake-Lye, R.C. & Papantoniou, D.A. 1983 Structure and dynamics of round turbulent jets. Phys. Fluids 26 (11), 31853192.10.1063/1.864090CrossRefGoogle Scholar
Dumouchel, C. 2008 On the experimental investigation on primary atomization of liquid streams. Exp. Fluids 45, 371422.10.1007/s00348-008-0526-0CrossRefGoogle Scholar
Dunand, A., Carreau, J.-L. & Roger, F. 2005 Liquid jet breakup and atomization by annular swirling gas jet. Atomiz. Spray 15 (2), 223247.10.1615/AtomizSpr.v15.i2.70CrossRefGoogle Scholar
Eaton, J.K. & Fessler, J.R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.10.1016/0301-9322(94)90072-8CrossRefGoogle Scholar
Favre-Marinet, M., Camano, E.B. & Sarboch, J. 1999 Near-field of coaxial jets with large density differences. Exp. Fluids 26 (1), 97106.10.1007/s003480050268CrossRefGoogle Scholar
Fong, K.O., Xue, X., Osuna-Orozco, R. & Aliseda, A. 2024 Gas–liquid coaxial atomization with swirl in high-pressure environments. Intl J. Multiphase Flow 174, 104767.10.1016/j.ijmultiphaseflow.2024.104767CrossRefGoogle Scholar
Gounder, J.D., Kourmatzis, A. & Masri, A.R. 2012 Turbulent piloted dilute spray flames: flow fields and droplet dynamics. Combust. Flame 159 (11), 33723397.10.1016/j.combustflame.2012.07.014CrossRefGoogle Scholar
Gürzing, S., Thiebes, A.L., Cornelissen, C.G., Jockenhoevel, S. & Reddemann, M.A. 2022 Suitability of bronchoscopic spraying for fluid deposition in lower airway regions: fluorescence analysis on a transparent in vitro airway model. J. Aerosol Med. Pulmon. Drug Delivery 35 (5), 269277.10.1089/jamp.2022.0016CrossRefGoogle ScholarPubMed
Hardalupas, Y., Taylor, A.M.K.P. & Whitelaw, J.H. 1989 Velocity and particle-flux characteristics of turbulent particle-laden jets. Proc. R. Soc. Lond. A. Math. Phys. Sci. 426 (1870), 3178.Google Scholar
Hardalupas, Y., Taylor, A.M.K.P. & Whitelaw, J.H. 1990 Velocity and size characteristics of liquid-fuelled flames stabilized by a swirl burner. Proc. R. Soc. Lond. A. Math. Phys. Sci. 428 (1874), 129155.Google Scholar
Hardalupas, Y., Taylor, A.M.K.P. & Whitelaw, J.H. 1992 Particle dispersion in a vertical round sudden-expansion flow. Philos. Trans. R. Soc. Lond. Ser. A: Phys. Engng Sci. 341 (1662), 411442.Google Scholar
Hardalupas, Y. & Whitelaw, J.H. 1994 Characteristics of sprays produced by coaxial airblast atomizers. J. Propul. Power 10 (4), 453460.10.2514/3.23795CrossRefGoogle Scholar
Hoffmann, S., Lenze, B. & Eickhoff, H. 1997 Results of Experiments and Models for Predicting Stability Limits of Turbulent Swirling Flames, vol. 78699. American Society of Mechanical Engineers.10.1115/97-GT-396CrossRefGoogle Scholar
Hopfinger, E.J. & Lasheras, J.C. 1996 Explosive breakup of a liquid jet by a swirling coaxial gas jet. Phys. Fluids 8 (7), 16961698.10.1063/1.868981CrossRefGoogle Scholar
Huck, P.D., Osuna-Orozco, R., Machicoane, N. & Aliseda, A. 2022 Spray dispersion regimes following atomization in a turbulent co-axial gas jet. J. Fluid Mech. 932, A36.10.1017/jfm.2021.992CrossRefGoogle Scholar
Hussein, H.J., Capp, S.P. & George, W.K. 1994 Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 3175.10.1017/S002211209400323XCrossRefGoogle Scholar
Jerome, J., Marty, S., Matas, J.-P., Zaleski, S. & Hoepffner, J. 2013 Vortices catapult droplets in atomization. Phys. Fluids 25 (11), 112109.10.1063/1.4831796CrossRefGoogle Scholar
Kaczmarek, M., Osuna-Orozco, R., Huck, P.D., Aliseda, A. & Machicoane, N. 2022 Spatial characterization of the flapping instability of a laminar liquid jet fragmented by a swirled gas co-flow. Intl J. Multiphase Flow 152, 104056.10.1016/j.ijmultiphaseflow.2022.104056CrossRefGoogle Scholar
Kandasamy, R., Ho, J.Y., Liu, P., Wong, T.N., Toh, K.C. & Chua, S.J. 2022 Two-phase spray cooling for high ambient temperature data centers: Evaluation of system performance. Appl. Energy 305, 117816.10.1016/j.apenergy.2021.117816CrossRefGoogle Scholar
Ko, N.W.M. & Davies, P.O.A.L. 1971 The near field within the potential cone of subsonic cold jets. J. Fluid Mech. 50 (1), 4978.10.1017/S0022112071002453CrossRefGoogle Scholar
Kuhlman, J.M. 1987 Variation of entrainment in annular jets. AIAA J. 25 (3), 373379.10.2514/3.9633CrossRefGoogle Scholar
Kumar, A. & Sahu, S. 2019 Large scale instabilities in coaxial air-water jets with annular air swirl. Phys. Fluids 31 (12), 124103.10.1063/1.5122273CrossRefGoogle Scholar
Kwark, J.-H., Jeong, Y.-K., Jeon, C.-H. & Chang, Y.-J. 2005 Effect of swirl intensity on the flow and combustion of a turbulent non-premixed flat flame. Flow, Turbul. Combust. 73, 231257.10.1007/s10494-005-4777-zCrossRefGoogle Scholar
Lallart, A., Cartellier, A., Garnier, P., Charlaix, E. & Lorenceau, E. 2024 The fluid mechanics of spray cleaning: when the stress amplification at the contact lines of impacting droplets nano-scraps particles. J. Fluid Mech. 1000, A31.10.1017/jfm.2024.988CrossRefGoogle Scholar
Lasheras, J.C., Villermaux, E. & Hopfinger, E.J. 1998 Break-up and atomization of a round water jet by a high-speed annular air jet. J. Fluid Mech. 357, 351379.10.1017/S0022112097008070CrossRefGoogle Scholar
Lasheras, J.C. & Hopfinger, E.J. 2000 Liquid jet instability and atomization in a coaxial gas stream. Annu. Rev. Fluid Mech. 32 (1), 275308.10.1146/annurev.fluid.32.1.275CrossRefGoogle Scholar
Lau, T.C.W. & Nathan, G.J. 2014 Influence of Stokes number on the velocity and concentration distributions in particle-laden jets. J. Fluid Mech. 757, 432457.10.1017/jfm.2014.496CrossRefGoogle Scholar
Lau, T.C.W. & Nathan, G.J. 2016 The effect of Stokes number on particle velocity and concentration distributions in a well-characterised, turbulent, co-flowing two-phase jet. J. Fluid Mech. 809, 72110.10.1017/jfm.2016.666CrossRefGoogle Scholar
Lazaro, B.J. & Lasheras, J.C. 1992 Particle dispersion in the developing free shear layer. Part 2. Forced flow. J. Fluid Mech. 235, 179221.10.1017/S0022112092001083CrossRefGoogle Scholar
Liepmann, D. & Gharib, M. The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech. 245, 643668.10.1017/S0022112092000612CrossRefGoogle Scholar
Ling, Y., Fuster, D., Tryggvason, G. & Zaleski, S. 2019 A two-phase mixing layer between parallel gas and liquid streams: multiphase turbulence statistics and influence of interfacial instability. J. Fluid Mech. 859, 268307.10.1017/jfm.2018.825CrossRefGoogle Scholar
Longmire, E.K. & Eaton, J.K. 1992 Structure of a particle-laden round jet. J. Fluid Mech. 236, 217257.10.1017/S002211209200140XCrossRefGoogle Scholar
Lozano, A. & Barreras, F. 2001 Experimental study of the gas flow in an air-blasted liquid sheet. Exp. Fluids 31 (4), 367376.10.1007/s003480100301CrossRefGoogle Scholar
Machicoane, N., Ricard, G., Osuna-Orozco, R., Huck, P.D. & Aliseda, A. 2020 Influence of steady and oscillating swirl on the near-field spray characteristics in a two-fluid coaxial atomizer. Intl J. Multiphase Flow 129, 103318.10.1016/j.ijmultiphaseflow.2020.103318CrossRefGoogle Scholar
Makhnenko, I., Alonzi, E.R., Fredericks, S.A., Colby, C.M. & Dutcher, C.S. 2021 A review of liquid sheet breakup: perspectives from agricultural sprays. J. Aerosol Sci. 157, 105805.10.1016/j.jaerosci.2021.105805CrossRefGoogle Scholar
Manish, M. & Sahu, S. 2019 Droplet clustering and local spray unsteadiness in air-assisted sprays. Exp. Therm. Fluid Sci. 100, 89103.10.1016/j.expthermflusci.2018.08.026CrossRefGoogle Scholar
Marmottant, P. & Villermaux, E. 2004 On spray formation. J. Fluid Mech. 498, 73111.10.1017/S0022112003006529CrossRefGoogle Scholar
Matas, J.-P., Delon, A. & Cartellier, A. 2018 Shear instability of an axisymmetric air–water coaxial jet. J. Fluid Mech. 843, 575600.10.1017/jfm.2018.167CrossRefGoogle Scholar
Modarress, D., Tan, H. & Elghobashi, S. 1984 Two-component LDA measurement in a two-phase turbulent jet. AIAA J. 22 (5), 624630.10.2514/3.8647CrossRefGoogle Scholar
Muliadi, A. & Sojka, P.E. 2010 A review of pharmaceutical tablet spray coating. Atomiz. Sprays 20 (7), 611638.10.1615/AtomizSpr.v20.i7.40CrossRefGoogle Scholar
Oberleithner, K., Sieber, M., Nayeri, C.N., Paschereit, C.O., Petz, C., Hege, H.-C., Noack, B.R. & Wygnanski, I. 2011 Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383414.10.1017/jfm.2011.141CrossRefGoogle Scholar
Osuna Orozco, R. 2021 Characterization and control of electrostatically assisted two-fluid coaxial atomization. PhD thesis.Google Scholar
Osuna-Orozco, R., Machicoane, N., Huck, P.D. & Aliseda, A. 2019 Feedback control of coaxial atomization based on the spray liquid distribution. Atomiz. Sprays 29 (6), 545551.10.1615/AtomizSpr.2019031766CrossRefGoogle Scholar
Osuna-Orozco, R., Machicoane, N., Huck, P.D. & Aliseda, A. 2020 Feedback control of the spray liquid distribution of electrostatically assisted coaxial atomization. Atomiz. Sprays 30 (1), 19.10.1615/AtomizSpr.2020033430CrossRefGoogle Scholar
Osuna-Orozco, R., Machicoane, N., Huck, P.D. & Aliseda, A. 2022 Effect of electrostatic forcing on coaxial two-fluid atomization. Phys. Rev. Fluids 7 (7), 074301.10.1103/PhysRevFluids.7.074301CrossRefGoogle Scholar
Panchapakesan, N.R. & Lumley, J.L. 1993 Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech. 246, 197223.10.1017/S0022112093000096CrossRefGoogle Scholar
Park, C.J. & Chen, L.-D. 1989 Experimental investigation of confined turbulent jets. Part 11: Particle-laden flow data. AIAA J. 27 (11), 15111516.10.2514/3.48839CrossRefGoogle Scholar
Pope, S.B. 2001 Turbulent flows. Meas. Sci. Technol. 12 (11), 20202021.10.1088/0957-0233/12/11/705CrossRefGoogle Scholar
Préaux, G., Lasheras, J.C. & Hopfinger, E.J. 1998 Atomization of a liquid jet by a high momentum coaxial swirling gas jet. In Proc. 3rd Int. Conf. Multiphase Flow.Google Scholar
Prevost, F., Boree, J., Nuglisch, H.J. & Charnay, G. 1996 Measurements of fluid/particle correlated motion in the far field of an axisymmetric jet. Intl J. Multiphase Flow 22 (4), 685701.10.1016/0301-9322(96)00009-2CrossRefGoogle Scholar
Qaddah, B., Chapelle, P., Bellot, J.P., Jourdan, J., Kewalramani, G., Deborde, A., Hammes, R. & Rimbert, N. 2024 Primary and secondary breakup of molten Ti64 in an EIGA atomizer for metal powder production. Powder Technol. 438, 119665.10.1016/j.powtec.2024.119665CrossRefGoogle Scholar
Rajamanickam, K. & Basu, S. 2017 Insights into the dynamics of spray–swirl interactions. J. Fluid Mech. 810, 82126.CrossRefGoogle Scholar
Rajamanickam, K. & Basu, S. 2018 Insights into the dynamics of conical breakdown modes in coaxial swirling flow field. J. Fluid Mech. 853, 72110.10.1017/jfm.2018.549CrossRefGoogle Scholar
Rehab, H., Villermaux, E. & Hopfinger, E.J. 1997 Flow regimes of large-velocity-ratio coaxial jets. J. Fluid Mech. 345, 357381.10.1017/S002211209700637XCrossRefGoogle Scholar
Rostami, A., Li, R. & Kheirkhah, S. 2024 Three-dimensional clustering characteristics of large-Stokes-number dilute sprays interacting with turbulent swirling co-flows. J. Fluid Mech. 999, A73.10.1017/jfm.2024.926CrossRefGoogle Scholar
Rostami, A., Li, R. & Kheirkhah, S. 2025 Three-dimensional positioning, sizing, and velocimetry of dilute sprays using paired astigmatic interferometric particle imaging (PAIPI). Exp. Fluids 66 (6), 124.10.1007/s00348-025-04049-2CrossRefGoogle Scholar
Sahu, S. et al. 2018 Analysis of droplet clustering in air-assist sprays using voronoi tessellations. Phys. Fluids 30 (12), 123305.Google Scholar
Sbrizzai, F., Verzicco, R., Pidria, M.F. & Soldati, A. 2004 Mechanisms for selective radial dispersion of microparticles in the transitional region of a confined turbulent round jet. Intl J. Multiphase Flow 30 (11), 13891417.10.1016/j.ijmultiphaseflow.2004.07.004CrossRefGoogle Scholar
Shuen, J.-S., Solomon, A.S.P., Zhang, Q.F. & Faeth, G.M. 1985 Structure of particle-laden jets - measurements and predictions. AIAA J. 23 (3), 396404.10.2514/3.8926CrossRefGoogle Scholar
Singh, G., Juddoo, M., Kourmatzis, A., Dunn, M.J. & Masri, A.R. 2020 Heat release zones in turbulent, moderately dense spray flames of ethanol and biodiesel. Combust. Flame 220, 298311.10.1016/j.combustflame.2020.07.005CrossRefGoogle Scholar
Squires, K.D. & Eaton, J.K. 1990 Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A: Fluid Dyn. 2 (7), 11911203.10.1063/1.857620CrossRefGoogle Scholar
Takahashi, M., Fukui, R., Tsujimoto, K., Ando, T. & Shakouchi, T. 2023 Helical structures in a temporally developing round jet in the developed state. Flow Turbul. Combust. 111 (1), 5979.10.1007/s10494-023-00423-4CrossRefGoogle Scholar
Tolfts, O., Deplus, G. & Machicoane, N. 2023 Statistics and dynamics of a liquid jet under fragmentation by a gas jet. Phys. Rev. Fluids 8 (4), 044304.10.1103/PhysRevFluids.8.044304CrossRefGoogle Scholar
Tolfts, O., Rack, A. & Machicoane, N. 2024 Morphology and dynamics of the liquid jet in high-speed gas-assisted atomization retrieved through synchrotron-based high-speed X-ray imaging. Intl J. Multiphase Flow 181, 105004.10.1016/j.ijmultiphaseflow.2024.105004CrossRefGoogle Scholar
Tratnig, A. & Brenn, G. 2010 Drop size spectra in sprays from pressure-swirl atomizers. Intl J. Multiphase Flow 36 (5), 349363.10.1016/j.ijmultiphaseflow.2010.01.008CrossRefGoogle Scholar
Tso, J. & Hussain, F. Organized motions in a fully developed turbulent axisymmetric jet. J. Fluid Mech. 203, 425448.10.1017/S0022112089001539CrossRefGoogle Scholar
Ünal, A. 1989 Liquid break-up in gas atomization of fine aluminum powders. Metall. Trans. B 20, 6169.10.1007/BF02670350CrossRefGoogle Scholar
Wu, H., Zhang, F., Zhang, Z. & Hou, L. 2022 Atomization and droplet dynamics of a gas–liquid two-phase jet under different mass loading ratios. Intl J. Multiphase Flow 151, 104043.10.1016/j.ijmultiphaseflow.2022.104043CrossRefGoogle Scholar
Yarin, A.L., Roisman, I.V. & Tropea, C. 2017 Collision Phenomena in Liquids and Solids. Cambridge University Press.10.1017/9781316556580CrossRefGoogle Scholar
Yoda, M., Hesselink, L. & Mungal, M.G. 1992 The evolution and nature of large-scale structures in the turbulent jet. Phys. Fluids A: Fluid Dyn. 4 (4), 803811.10.1063/1.858297CrossRefGoogle Scholar
Zandian, A., Sirignano, W.A. & Hussain, F. 2018 Understanding liquid-jet atomization cascades via vortex dynamics. J. Fluid Mech. 843, 293354.10.1017/jfm.2018.113CrossRefGoogle Scholar
Zhou, H., Hawkes, E.R., Lau, T.C.W., Chin, R., Nathan, G.J. & Wang, H. 2022 Understanding of turbulence modulation and particle response in a particle-laden jet from direct numerical simulations. J. Fluid Mech. 950, A3.10.1017/jfm.2022.764CrossRefGoogle Scholar
Supplementary material: File

Sahoo et al. supplementary movie 1

Spray generation and dispersion for Rel = 1120 and Weg = 210 at SR = 0 and 0.8.
Download Sahoo et al. supplementary movie 1(File)
File 10.4 MB
Supplementary material: File

Sahoo et al. supplementary movie 2

Spray generation and dispersion for Rel = 1120 and Weg = 830 at SR = 0 and 0.8.
Download Sahoo et al. supplementary movie 2(File)
File 10.3 MB