Hostname: page-component-68c7f8b79f-r8tb2 Total loading time: 0 Render date: 2025-12-18T17:55:22.752Z Has data issue: false hasContentIssue false

Slip slender-body theory

Published online by Cambridge University Press:  18 December 2025

Yi Man*
Affiliation:
School of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, Peking University , Beijing 100871, PR China
Lyndon Koens
Affiliation:
Department of Mathematics, University of Hull, Hull HU6 7RX, UK Discipline of Mathematics, University of Adelaide, Adelaide 5005, Australia
Eric Lauga*
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
*
Corresponding authors: Yi Man, yiman@pku.edu.cn; Eric Lauga, e.lauga@damtp.cam.ac.uk
Corresponding authors: Yi Man, yiman@pku.edu.cn; Eric Lauga, e.lauga@damtp.cam.ac.uk

Abstract

Slip effects on solid boundaries are common in complex fluids. Boundary depletion layers in polymer solutions can create apparent slip effects, which can in turn significantly impact the dynamics of moving bodies. Motivated by microswimmer locomotion in such environments, we derive a series of slip slender-body theories for filamentous bodies experiencing slip-like boundary conditions. Using Navier’s slip model, we derive three slip slender-body theories, linking the body’s velocity to the distribution of hydrodynamic forces. The models are shown to be consistent with each other and with existing numerical computations. As the slip length increases, we show that the drag parallel to the body decreases towards zero while the perpendicular drag remains finite, in a manner which we quantify. This reduction in drag ratio is shown to be inversely related to microswimmer mobility in two simple swimmer models. This increase could help rationalise empirically observed enhanced swimming in complex fluids.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Batchelor, G.K. 1970 Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44 (3), 419440.10.1017/S002211207000191XCrossRefGoogle Scholar
Borker, N.S. & Koch, D.L. 2019 Slender body theory for particles with non-circular cross-sections with application to particle dynamics in shear flows. J. Fluid Mech. 877, 10981133.10.1017/jfm.2019.625CrossRefGoogle Scholar
Chang, Y.C. & Keh, H.J. 2011 Theoretical study of the creeping motion of axially and fore-and-aft symmetric slip particles in an arbitrary direction. Eur. J. Mech.-B/Fluids 30 (2), 236244.10.1016/j.euromechflu.2010.11.007CrossRefGoogle Scholar
Childress, S. 1981 Mechanics of Swimming and Flying. Cambridge University Press.10.1017/CBO9780511569593CrossRefGoogle Scholar
Choi, C.-H., Westin, K.J.A. & Breuer, K.S. 2003 Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys. Fluids 15 (10), 28972902.10.1063/1.1605425CrossRefGoogle Scholar
Chwang, A.T. & Wu, T.Y.-T. 1975 Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech. 67 (4), 787815.10.1017/S0022112075000614CrossRefGoogle Scholar
Cohen, Y. & Metzner, A.B. 1985 Apparent slip flow of polymer solutions. J. Rheol. 29 (1), 67102.10.1122/1.549811CrossRefGoogle Scholar
Cox, R.G. 1970 The motion of long slender bodies in a viscous fluid Part 1. General theory. J. Fluid Mech. 44 (4), 791810.10.1017/S002211207000215XCrossRefGoogle Scholar
Demir, E., Lordi, N., Ding, Y. & Pak, O.S. 2020 Nonlocal shear-thinning effects substantially enhance helical propulsion. Phys. Rev. Fluids 5 (11), 111301.10.1103/PhysRevFluids.5.111301CrossRefGoogle Scholar
Gagnon, D.A., Shen, X.N. & Arratia, P.E. 2013 Undulatory swimming in fluids with polymer networks. Europhys. Lett. 104 (1), 14004.10.1209/0295-5075/104/14004CrossRefGoogle Scholar
Gillies, E.A., Cannon, R.M., Green, R.B. & Pacey, A.A. 2009 Hydrodynamic propulsion of human sperm. J. Fluid Mech. 625, 445474.10.1017/S0022112008005685CrossRefGoogle Scholar
van Gogh, B., Demir, E., Palaniappan, D. & Pak, O.S. 2022 The effect of particle geometry on squirming through a shear-thinning fluid. J. Fluid Mech. 938, A3.10.1017/jfm.2022.116CrossRefGoogle Scholar
Gómez, S., Godínez, F.A., Lauga, E. & Zenit, R. 2017 Helical propulsion in shear-thinning fluids. J. Fluid Mech. 812, R3.10.1017/jfm.2016.807CrossRefGoogle Scholar
Götz, T. 2000 Interactions of fibers and flow: asymptotics, theory and numerics. PhD thesis, University of Kaiserslautern, Kaiserslautern, Germany.Google Scholar
Guglielmini, L., Kushwaha, A., Shaqfeh, E.S.G. & Stone, H.A. 2012 Buckling transitions of an elastic filament in a viscous stagnation point flow. Phys. Fluids 24 (12), 123601.10.1063/1.4771606CrossRefGoogle Scholar
Hancock, G.J. 1953 The self-propulsion of microscopic organisms through liquids. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 217(1128), 96121.Google Scholar
Hewitt, D.R. & Balmforth, N.J. 2018 Viscoplastic slender-body theory. J. Fluid Mech. 856, 870897.10.1017/jfm.2018.726CrossRefGoogle Scholar
Jawed, M K., Khouri, N K., Da, F., Grinspun, E. & Reis, P M. 2015 Propulsion and instability of a flexible helical rod rotating in a viscous fluid. Phys. Rev. Lett. 115 (16), 168101.10.1103/PhysRevLett.115.168101CrossRefGoogle Scholar
Johnson, R.E. 1980 An improved slender-body theory for Stokes flow. J. Fluid Mech. 99 (2), 411431.10.1017/S0022112080000687CrossRefGoogle Scholar
Kamal, C., Gravelle, S. & Botto, L. 2020 Hydrodynamic slip can align thin nanoplatelets in shear flow. Nat. Commun. 11 (1), 2425.10.1038/s41467-020-15939-wCrossRefGoogle ScholarPubMed
Keh, H.J. & Chang, Y.C. 2008 Slow motion of a slip spheroid along its axis of revolution. Intl J. Multiphase Flow 34 (8), 713722.10.1016/j.ijmultiphaseflow.2008.02.002CrossRefGoogle Scholar
Keller, J.B. & Rubinow, S.I. 1976 Slender-body theory for slow viscous flow. J. Fluid Mech. 75 (4), 705714.10.1017/S0022112076000475CrossRefGoogle Scholar
Koens, L. 2022 Tubular-body theory for viscous flows. Phys. Rev. Fluids 7, 034101.10.1103/PhysRevFluids.7.034101CrossRefGoogle Scholar
Koens, L. & Lauga, E. 2016 Slender-ribbon theory. Phys. Fluids 28 (1), 013101.10.1063/1.4938566CrossRefGoogle Scholar
Koens, L. & Lauga, E. 2018 The boundary integral formulation of Stokes flows includes slender-body theory. J. Fluid Mech. 850, R1.10.1017/jfm.2018.483CrossRefGoogle Scholar
Koens, L. & Montenegro-Johnson, T.D. 2021 Local drag of a slender rod parallel to a plane wall in a viscous fluid. Phys. Rev. Fluids 6, 064101.10.1103/PhysRevFluids.6.064101CrossRefGoogle Scholar
Koens, L. & Walker, B.J. 2024 Viscous tubular-body theory for plane interfaces. J. Fluid Mech. 979, A38.arXiv: 2303.17275.10.1017/jfm.2023.1085CrossRefGoogle Scholar
Lauga, E. 2016 Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48, 105130.10.1146/annurev-fluid-122414-034606CrossRefGoogle Scholar
Lauga, E. 2020 The Fluid Dynamics of Cell Motility. Cambridge University Press.10.1017/9781316796047CrossRefGoogle Scholar
Lauga, E. & Powers, T.R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72 (9), 096601.10.1088/0034-4885/72/9/096601CrossRefGoogle Scholar
Li, G., Lauga, E. & Ardekani, A.M. 2021 Microswimming in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 297, 104655.10.1016/j.jnnfm.2021.104655CrossRefGoogle Scholar
Lighthill, J. 1976 Flagellar hydrodynamics. SIAM Rev. 18 (2), 161230.10.1137/1018040CrossRefGoogle Scholar
Lighthill, S.J. 1975 Mathematical Biofluiddynamics. SIAM.10.1137/1.9781611970517CrossRefGoogle Scholar
Man, Y., Koens, L. & Lauga, E. 2016 Hydrodynamic interactions between nearby slender filaments. Europhys. Lett. 116 (2), 24002.10.1209/0295-5075/116/24002CrossRefGoogle Scholar
Man, Y. & Lauga, E. 2015 Phase-separation models for swimming enhancement in complex fluids. Phys. Rev. E 92 (2), 023004.10.1103/PhysRevE.92.023004CrossRefGoogle ScholarPubMed
Maxian, O. & Donev, A. 2022 Slender body theories for rotating filaments. J. Fluid Mech. 952, A5.10.1017/jfm.2022.869CrossRefGoogle Scholar
Mhetar, V. & Archer, L.A. 1998 Slip in entangled polymer solutions. Macromolecules 31 (19), 66396649.10.1021/ma971339hCrossRefGoogle Scholar
Montenegro-Johnson, T.D., Smith, A.A., Smith, D.J., Loghin, D. & Blake, J.R. 2012 Modelling the fluid mechanics of cilia and flagella in reproduction and development. Eur. Phys. J. E 35, 117.10.1140/epje/i2012-12111-1CrossRefGoogle ScholarPubMed
Mori, Y. & Ohm, L. 2021 Accuracy of slender body theory in approximating force exerted by thin fiber on viscous fluid. Stud. Appl. Math. 147 (1), 127179.10.1111/sapm.12380CrossRefGoogle Scholar
Nassios, J. & Sader, J.E. 2012 Asymptotic analysis of the Boltzmann–BGK equation for oscillatory flows. J. Fluid Mech. 708, 197249.10.1017/jfm.2012.302CrossRefGoogle Scholar
Navier, C.L.M.H. 1823 Mémoire sur les lois du mouvement des fluides. Mémoires De l’Académie Royale Des Sciences De l’Institut De France 6(,1823), 389440.Google Scholar
Ohm, L. 2024 Well-posedness of a viscoelastic resistive force theory and applications to swimming. J. Nonlinear Sci. 34 (5), 82.10.1007/s00332-024-10051-5CrossRefGoogle Scholar
Patlazhan, S. & Vagner, S. 2017 Apparent slip of shear thinning fluid in a microchannel with a superhydrophobic wall. Phys. Rev. E 96 (1), 013104.10.1103/PhysRevE.96.013104CrossRefGoogle Scholar
Patteson, A.E., Gopinath, A., Goulian, M. & Arratia, P.E. 2015 Running and tumbling with E. coli in polymeric solutions. Sci. Rep.-UK 5 (1), 15761.10.1038/srep15761CrossRefGoogle Scholar
Qu, Z. & Breuer, K.S. 2020 Effects of shear-thinning viscosity and viscoelastic stresses on flagellated bacteria motility. Phys. Rev. Fluids 5 (7), 073103.10.1103/PhysRevFluids.5.073103CrossRefGoogle Scholar
Riley, E.E., Das, D. & Lauga, E. 2018 Swimming of peritrichous bacteria is enabled by an elastohydrodynamic instability. Sci. Rep.-UK 8 (1), 10728.10.1038/s41598-018-28319-8CrossRefGoogle Scholar
Riley, E.E. & Lauga, E. 2017 Empirical resistive-force theory for slender biological filaments in shear-thinning fluids. Phys. Rev. E 95 (6), 062416.10.1103/PhysRevE.95.062416CrossRefGoogle ScholarPubMed
Rodenborn, B., Chen, C.-H., Swinney, H.L., Liu, B. & Zhang, H.P. 2013 Propulsion of microorganisms by a helical flagellum. Proc. Natl Acad. Sci. 110 (5), E338E347.10.1073/pnas.1219831110CrossRefGoogle ScholarPubMed
Roper, M., Dreyfus, R., Baudry, J., Fermigier, M., Bibette, J. & Stone, H.A. 2006 On the dynamics of magnetically driven elastic filaments. J. Fluid Mech. 554, 167190.10.1017/S0022112006009049CrossRefGoogle Scholar
Roselli, R.J. & Diller, K.R. 2011 Rheology of biological fluids. In Biotransport: Principles and Applications, pp. 107168. Springer.10.1007/978-1-4419-8119-6_4CrossRefGoogle Scholar
Shelley, M.J. 2016 The dynamics of microtubule/motor-protein assemblies in biology and physics. Annu. Rev. Fluid Mech. 48, 487506.10.1146/annurev-fluid-010814-013639CrossRefGoogle Scholar
Smith, D.J., Gaffney, E.A., Blake, J.R. & Kirkman-Brown, J.C. 2009 Human sperm accumulation near surfaces: a simulation study. J. Fluid Mech. 621, 289320.10.1017/S0022112008004953CrossRefGoogle Scholar
Spagnolie, S.E. & Underhill, P.T. 2023 Swimming in complex fluids. Annu. Rev. Condens. Matt. Phys. 14, 381415.10.1146/annurev-conmatphys-040821-112149CrossRefGoogle Scholar
Tocci, G., Joly, L. & Michaelides, A. 2014 Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Lett. 14 (12), 68726877.10.1021/nl502837dCrossRefGoogle ScholarPubMed
Walker, B.J., Ishimoto, K. & Gaffney, E.A. 2023 Hydrodynamic slender-body theory for local rotation at zero Reynolds number. Phys. Rev. Fluids 8 (3), 034101.10.1103/PhysRevFluids.8.034101CrossRefGoogle Scholar
Walther, J.H., Werder, T., Jaffe, R.L. & Koumoutsakos, P. 2004 Hydrodynamic properties of carbon nanotubes. Phys. Rev. E 69, 062201.10.1103/PhysRevE.69.062201CrossRefGoogle ScholarPubMed
Zhou, H., Mayorga-Martinez, C.C., Pané, S., Zhang, L. & Pumera, M. 2021 Magnetically driven micro and nanorobots. Chem. Rev. 121 (8), 49995041.10.1021/acs.chemrev.0c01234CrossRefGoogle ScholarPubMed
Zhu, G., van Gogh, B., Zhu, L., Pak, O.S. & Man, Y. 2024 Self-diffusiophoretic propulsion of a spheroidal particle in a shear-thinning fluid. J. Fluid Mech. 986, A39.10.1017/jfm.2024.350CrossRefGoogle Scholar
Zöttl, A. & Yeomans, J.M. 2019 Enhanced bacterial swimming speeds in macromolecular polymer solutions. Nat. Phys. 15 (6), 554558.10.1038/s41567-019-0454-3CrossRefGoogle Scholar