Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T04:08:51.293Z Has data issue: false hasContentIssue false

Shock polars for ideal and non-ideal gases

Published online by Cambridge University Press:  20 April 2021

Volker W. Elling*
Affiliation:
Institute of Mathematics, Academia Sinica, Taipei106319, Taiwan
*
Email address for correspondence: velling@math.sinica.edu.tw

Abstract

We show that shock polars for an ideal non-polytropic gas (thermally but not calorically perfect) have a unique velocity angle maximum, the critical shock, assuming a convex equation of state (positive fundamental derivative) and other standard conditions. We also show that the critical shock is always transonic. These properties are explained by a brief informal mass flux argument, which is then extended into a precise calculation. In the process we show that temperature, pressure, energy, enthalpy, normal mass flux and entropy are increasing along the forward Hugoniot curves, and hence along the polar from vanishing to normal shock; speed is decreasing along the entire polar, mass flux and, importantly, Mach number are decreasing on subsonic parts of the polar. If the equation of state is not convex, counterexamples can be given with multiple critical shocks, permitting more than two shocks that attain the same velocity angle, in particular, more than one shock of weak type, which would cause theoretical problems and practical risks of misprediction. For dissociating diatomic gases, numerical experiments suggest that positive fundamental derivative and uniqueness of critical shocks hold at all realistic pressures, although both fail at very low purely theoretical pressures.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alferez, N. & Touber, E. 2017 One-dimensional refraction properties of compression shocks in non-ideal gases. J. Fluid Mech. 814, 185221.CrossRefGoogle Scholar
Bdzil, J. & Short, M. 2017 Theory of Mach reflection of detonation at glancing incidence. J. Fluid Mech. 811, 269314.CrossRefGoogle Scholar
Bdzil, J.B. & Stewart, D.S. 2012 Theory of Detonation Shock Dynamics, pp. 373453. Springer.Google Scholar
Ben-Dor, G. 1992 Shock Wave Reflection Phenomena. Springer.CrossRefGoogle Scholar
Bethe, H. 1942 On the theory of shock waves for an arbitrary equation of state. Tech. Rep. PB-32189. Clearinghouse for Federal Scientific and Technical Information, USA.Google Scholar
Boyd, I.D., Candler, G.V. & Levin, D.A. 1995 Dissociation modelling in low density hypersonic flows of air. Phys. Fluids 7 (7), 17571763.CrossRefGoogle Scholar
Busemann, A. 1931 Handbuch der Experimentalphysik, vol. IV. Akademische Verlagsgesellschaft.Google Scholar
Chpoun, A., Passerel, D., Li, H. & Ben-Dor, G. 1995 Reconsideration of oblique shock wave reflection in steady flows. Part I. Experimental investigation. J. Fluid Mech. 301, 1935.CrossRefGoogle Scholar
Courant, R. & Friedrichs, K.O. 1948 Supersonic Flow and Shock Waves. Interscience Publishers.Google Scholar
Elling, V. 2009 a Counterexamples to the sonic criterion. Arch. Rat. Mech. Anal. 194 (3), 9871010.CrossRefGoogle Scholar
Elling, V. 2009 b Instability of strong regular reflection and counterexamples to the detachment criterion. SIAM J. Appl. Maths 70 (4), 13301340.CrossRefGoogle Scholar
Elling, V. 2010 Regular reflection in self-similar potential flow and the sonic criterion. Commun. Math. Anal. 8 (2), 2269.Google Scholar
Elling, V. 2012 Non-existence of strong regular reflections in self-similar potential flow. J. Differ. Equ. 252 (3), 20852103.CrossRefGoogle Scholar
Elling, V. & Liu, T.-P. 2006 Physicality of weak Prandtl-Meyer reflection. In RIMS Kokyuroku (ed. Shinya Nishibata), vol. 1495, pp. 112–117. Kyoto University, Research Institute for Mathematical Sciences.Google Scholar
Elling, V. & Liu, T.-P. 2008 Supersonic flow onto a solid wedge. Commun. Pure Appl. Maths 61 (10), 13471448.CrossRefGoogle Scholar
Fowles, G.R. 1981 Stimulated and spontaneous emission of acoustic waves from shock fronts. Phys. Fluids 24, 220227.CrossRefGoogle Scholar
Gnoffo, P.A. 1999 Planetary-entry gas dynamics. Annu. Rev. Fluid Mech. 31, 459494.CrossRefGoogle Scholar
Grasso, F. & Paoli, R. 2000 Stability of shock wave reflections in nonequilibrium steady flows and hysteresis. Phys. Fluids 12 (12), 32653279.CrossRefGoogle Scholar
Henderson, L.F. & Menikoff, R. 1998 Triple-shock entropy theorem and its consequences. J. Fluid Mech. 366, 179210.CrossRefGoogle Scholar
Hornung, H.G., Oertel, H. & Sandeman, R.J. 1979 Transition to Mach reflexion of shock waves in steady and pseudosteady flow with and without relaxation. J. Fluid Mech. 90, 541560.CrossRefGoogle Scholar
Huete, C., Cobos-Campos, F., Abdikamalov, E. & Bouquet, S. 2020 Acoustic stability of nonadiabatic high-energy shocks. Phys. Rev. Fluids 5, 113403.CrossRefGoogle Scholar
Huete, C. & Vera, M. 2019 D'Yakov-Kantorovich instability in planar reactive shocks. J. Fluid Mech. 879, 5484.CrossRefGoogle Scholar
Hunter, J. & Tesdall, A. 2002 Self-similar solutions for weak shock reflection. SIAM J. Appl. Maths 63 (1), 4261.Google Scholar
Ivanov, A.G. & Novikov, S.A. 1961 Rarefaction shock waves in iron and steel. Zh. Eksp. Teor. Fiz. 40, 18801882.Google Scholar
Laguarda, L., Hickel, S., Schrijer, F.F.J. & van Oudsheusden, B.W. 2020 Dynamics of unsteady asymmetric shock interactions. J. Fluid Mech. 888, A18.CrossRefGoogle Scholar
Lambrakis, K.C. & Thompson, P.A. 1972 Existence of real fluids with a negative fundamental derivative $\varGamma$. Phys. Fluids 15 (5), 933935.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1980 Statistics Physics, Part 1, 3rd edn. Butterworth-Heinemann.Google Scholar
Lieberthal, B., Stewart, D.S. & Hernandez, A. 2017 Geometrical shock dynamics applied to condensed phase materials. J. Fluid Mech. 828, 104134.CrossRefGoogle Scholar
Menikoff, R. & Plohr, B.J. 1989 The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61 (1), 75130.CrossRefGoogle Scholar
Meyer, T. 1908 Ueber zweidimensionale Bewegungsvorgänge in einem Gas, das mit Ueberschallge schwindigkeit strömt. Forsch. Ver. Deut. Ing. 62, 3167.Google Scholar
von Neumann, J. 1943 Oblique reflection of shocks. Tech. Rep. 12. In: Collected works, vol. 6, pp. 238–299. Bureau of Ordnance, USA.Google Scholar
Short, M. & Quirk, J. 2018 a The effect of compaction of a porous material confiner on detonation propagation. J. Fluid Mech. 834, 434463.CrossRefGoogle Scholar
Short, M. & Quirk, J. 2018 b High-explosive detonation-confiner interactions. Annu. Rev. Fluid Mech. 50, 215242.CrossRefGoogle Scholar
Skews, B.W. & Ashworth, J.T. 2005 The physical nature of weak shock wave reflection. J. Fluid Mech. 542, 105114.CrossRefGoogle Scholar
Teshukov, V.M. 1986 On the shock polars in a gas with general equations of state. Z. Angew. Math. Mech. 50 (1), 7175.CrossRefGoogle Scholar
Teshukov, V.M. 1989 Stability of regular shock wave reflection. Prikl. Mekh. Tech. Fiz. 30 (2), 2633 (translation in Appl. Mech. Tech. Phys. 30 (189), 1989).Google Scholar
Thompson, P.A. 1971 A fundamental derivative in gasdynamics. Phys. Fluids 14 (9), 18431849.CrossRefGoogle Scholar
Vasilev, E.I. & Kraiko, A.N. 1999 Numerical simulation of weak shock diffraction over a wedge under the von Neumann paradox conditions. Comput. Math. Math. Phys. 39 (8), 13351345.Google Scholar
Vimercati, D., Kluwick, A. & Guardone, A. 2018 Oblique waves in steady supersonic flows of Bethe-Zel'dovich-Thompson fluids. J. Fluid Mech. 855, 445468.CrossRefGoogle Scholar
Weyl, H. 1949 Shock waves in arbitrary fluids. Commun. Pure Appl. Maths 2 (2–3), 103122.CrossRefGoogle Scholar
Woolley, H.W. 1953 Thermodynamic properties of molecular oxygen. Tech. Rep. 2611. National Bureau of Standards, USA.Google Scholar
Woolley, H.W., Scott, R.B. & Brickwedde, F.G. 1948 Compilation of thermal properties of hydrogen in its various isotopic and ortho-para modifications. J. Res. Natl Bur. Stand. 41 (5), 379475.CrossRefGoogle ScholarPubMed
Zamfirescu, C., Guardone, A. & Colonna, P. 2008 Admissibility region for rarefaction shock waves in gases. J. Fluid Mech. 599, 363381.CrossRefGoogle Scholar