Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T02:29:37.718Z Has data issue: false hasContentIssue false

Shear dispersion of multispecies electrolyte solutions in the channel domain

Published online by Cambridge University Press:  06 September 2023

Lingyun Ding*
Affiliation:
Department of Mathematics, University of California Los Angeles, CA 90095, USA
*
Email address for correspondence: dingly@g.ucla.edu

Abstract

In multispecies electrolyte solutions, even in the absence of an external electric field, differences in ion diffusivities induce an electric potential and generate additional fluxes for each species. This electro-diffusion process is well-described by the advection Nernst–Planck equation. This study aims to analyse the long-time behaviour of the governing equation under electroneutrality and zero current conditions, and to investigate how the diffusion-induced electric potential and shear flow enhance the effective diffusion coefficients of each species in channel domains. The exact solutions of the effective equation with certain special parameters, as well as the asymptotic analyses for ions with large diffusivity discrepancies, are presented. Furthermore, there are several interesting properties of the effective equation. First, it is a generalization of the Taylor dispersion, with a nonlinear diffusion tensor replacing the scalar diffusion coefficient. Second, the effective equation exhibits a scaling relation, revealing that the system with a weak flow is equivalent to the system with a strong flow under scaled physical parameters. Third, in the case of injecting an electrolyte solution into a channel containing well-mixed buffer solutions or electrolyte solutions with the same ion species, if the concentration of the injected solution is lower than that of the pre-existing solution, then the effective equation simplifies to a multi-dimensional diffusion equation. However, when introducing the electrolyte solution into a channel filled with deionized water, the ion–electric interaction results in several phenomena not present in the advection–diffusion equation, including upstream migration of some species, spontaneous separation of ions, and non-monotonic dependence of the effective diffusivity on Péclet numbers. Finally, the dependence of effective diffusivity on concentration and ion diffusivity suggests a method to infer the concentration ratio of each component and ion diffusivity by measuring the effective diffusivity.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajdari, A., Bontoux, N. & Stone, H.A. 2006 Hydrodynamic dispersion in shallow microchannels: the effect of cross-sectional shape. Anal. Chem. 78 (2), 387392.10.1021/ac0508651CrossRefGoogle ScholarPubMed
Alessio, B.M., Shim, S., Gupta, A. & Stone, H.A. 2022 Diffusioosmosis-driven dispersion of colloids: a Taylor dispersion analysis with experimental validation. J. Fluid Mech. 942, A23.10.1017/jfm.2022.321CrossRefGoogle Scholar
Aminian, M., Bernardi, F., Camassa, R., Harris, D.M. & McLaughlin, R.M. 2016 How boundaries shape chemical delivery in microfluidics. Science 354 (6317), 12521256.10.1126/science.aag0532CrossRefGoogle ScholarPubMed
Aminian, M., Bernardi, F., Camassa, R., Harris, D.M. & McLaughlin, R.M. 2018 The diffusion of passive tracers in laminar shear flow. JoVE (J. Vis. Exp.) 135, e57205.Google Scholar
Aminian, M., Bernardi, F., Camassa, R. & McLaughlin, R.M. 2015 Squaring the circle: geometric skewness and symmetry breaking for passive scalar transport in ducts and pipes. Phys. Rev. Lett. 115 (15), 154503.10.1103/PhysRevLett.115.154503CrossRefGoogle ScholarPubMed
Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235 (1200), 6777.Google Scholar
Aris, R. 1960 On the dispersion of a solute in pulsating flow through a tube. Proc. R. Soc. Lond. A 259 (1298), 370376.Google Scholar
Ault, J.T., Warren, P.B., Shin, S. & Stone, H.A. 2017 Diffusiophoresis in one-dimensional solute gradients. Soft Matt. 13 (47), 90159023.CrossRefGoogle ScholarPubMed
Barenblatt, G.I. & Isaakovich, B.G. 1996 Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics. Cambridge University Press.CrossRefGoogle Scholar
Bello, M.S., Rezzonico, R. & Righetti, P.G. 1994 Use of Taylor–Aris dispersion for measurement of a solute diffusion coefficient in thin capillaries. Science 266 (5186), 773776.CrossRefGoogle ScholarPubMed
Ben-Yaakov, S. 1972 Diffusion of sea water ions – I. Diffusion of sea water into a dilute solution. Geochim. Cosmochim. Acta 36 (12), 13951406.10.1016/0016-7037(72)90069-5CrossRefGoogle Scholar
Bhattacharyya, S., Gopmandal, P.P., Baier, T. & Hardt, S. 2013 Sample dispersion in isotachophoresis with Poiseuille counterflow. Phys. Fluids 25 (2), 022001.10.1063/1.4789967CrossRefGoogle Scholar
Biagioni, V., Cerbelli, S. & Desmet, G. 2022 Shape-enhanced open-channel hydrodynamic chromatography. Anal. Chem. 94 (46), 1598015986.10.1021/acs.analchem.2c02766CrossRefGoogle ScholarPubMed
Boudreau, B.P., Meysman, F.J.R. & Middelburg, J.J. 2004 Multicomponent ionic diffusion in porewaters: Coulombic effects revisited. Earth Planet. Sci. Lett. 222 (2), 653666.CrossRefGoogle Scholar
Camassa, R., Ding, L., Kilic, Z. & McLaughlin, R.M. 2021 Persisting asymmetry in the probability distribution function for a random advection–diffusion equation in impermeable channels. Physica D 425, 132930.CrossRefGoogle Scholar
Camassa, R., Lin, Z. & McLaughlin, R.M. 2010 The exact evolution of the scalar variance in pipe and channel flow. Commun. Math. Sci. 8 (2), 601626.CrossRefGoogle Scholar
Carney, S.P. & Engquist, B. 2022 Heterogeneous multiscale methods for rough-wall laminar viscous flow. Commun. Math. Sci. 20 (8), 20692106.CrossRefGoogle Scholar
Casalini, T., Salvalaglio, M., Perale, G., Masi, M. & Cavallotti, C. 2011 Diffusion and aggregation of sodium fluorescein in aqueous solutions. J. Phys. Chem. B 115 (44), 1289612904.CrossRefGoogle ScholarPubMed
Chatwin, P.C. 1970 The approach to normality of the concentration distribution of a solute in a solvent flowing along a straight pipe. J. Fluid Mech. 43 (2), 321352.CrossRefGoogle Scholar
Chatwin, P.C. 1975 On the longitudinal dispersion of passive contaminant in oscillatory flows in tubes. J. Fluid Mech. 71 (3), 513527.CrossRefGoogle Scholar
Cussler, E.L. 2013 Multicomponent Diffusion, vol. 3. Elsevier.Google Scholar
Deen, W.M. 1998 Analysis of Transport Phenomena, vol. 2. Oxford University Press.Google Scholar
Ding, L., Hunt, R., McLaughlin, R.M. & Woodie, H. 2021 Enhanced diffusivity and skewness of a diffusing tracer in the presence of an oscillating wall. Res. Math. Sci. 8, 34.CrossRefGoogle Scholar
Ding, L. & McLaughlin, R.M. 2022 a Ergodicity and invariant measures for a diffusing passive scalar advected by a random channel shear flow and the connection between the Kraichnan–Majda model and Taylor–Aris dispersion. Physica D 432, 133118.CrossRefGoogle Scholar
Ding, L. & McLaughlin, R.M. 2022 b Determinism and invariant measures for diffusing passive scalars advected by unsteady random shear flows. Phys. Rev. Fluids 7 (7), 074502.CrossRefGoogle Scholar
Ding, L. & McLaughlin, R.M. 2023 Dispersion induced by unsteady diffusion-driven flow in parallel-plate channel. Phys. Rev. Fluids 8 (8), 084501.CrossRefGoogle Scholar
Dutta, D. & Leighton, D.T. 2001 Dispersion reduction in pressure-driven flow through microetched channels. Anal. Chem. 73 (3), 504513.CrossRefGoogle ScholarPubMed
Eggers, J. & Fontelos, M.A. 2008 The role of self-similarity in singularities of partial differential equations. Nonlinearity 22 (1), R1.CrossRefGoogle Scholar
Fischer, H.B. 1969 The effect of bends on dispersion in streams. Water Resour. Res. 5 (2), 496506.CrossRefGoogle Scholar
GanOr, N., Rubin, S. & Bercovici, M. 2015 Diffusion dependent focusing regimes in peak mode counterflow isotachophoresis. Phys. Fluids 27 (7), 072003.CrossRefGoogle Scholar
Ghosal, S. & Chen, Z. 2010 Nonlinear waves in capillary electrophoresis. Bull. Math. Biol. 72 (8), 20472066.CrossRefGoogle ScholarPubMed
Ghosal, S. & Chen, Z. 2012 Electromigration dispersion in a capillary in the presence of electro-osmotic flow. J. Fluid Mech. 697, 436454.CrossRefGoogle Scholar
Gopmandal, P.P. & Bhattacharyya, S. 2015 Effects of convection on isotachophoresis of electrolytes. Trans. ASME J. Fluids Engng 137 (8), 081202.CrossRefGoogle Scholar
Griffiths, I.M. & Stone, H.A. 2012 Axial dispersion via shear-enhanced diffusion in colloidal suspensions. Europhys. Lett. 97 (5), 58005.CrossRefGoogle Scholar
Gupta, A., Shim, S., Issah, L., McKenzie, C. & Stone, H.A. 2019 Diffusion of multiple electrolytes cannot be treated independently: model predictions with experimental validation. Soft Matt. 15 (48), 99659973.CrossRefGoogle ScholarPubMed
Hashemi, A., Bukosky, S.C., Rader, S.P., Ristenpart, W.D. & Miller, G.H. 2018 Oscillating electric fields in liquids create a long-range steady field. Phys. Rev. Lett. 121 (18), 185504.CrossRefGoogle Scholar
Hosokawa, Y., Yamada, K., Johannesson, B. & Nilsson, L.-O. 2011 Development of a multi-species mass transport model for concrete with account to thermodynamic phase equilibriums. Mater. Struct. 44, 15771592.CrossRefGoogle Scholar
Ignatova, M. & Shu, J. 2021 Global solutions of the Nernst–Planck–Euler equations. SIAM J. Math. Anal. 53 (5), 55075547.CrossRefGoogle Scholar
Leaist, D.G. 2017 Quinary mutual diffusion coefficients of aqueous mannitol $+$ glycine $+$ urea $+$ KCl and aqueous tetrabutylammonium chloride $+$ LiCl $+$ KCl $+$ HCl solutions measured by Taylor dispersion. J. Solution Chem. 46 (4), 798814.CrossRefGoogle Scholar
Leaist, D.G. & Hao, L. 1993 Diffusion in buffered protein solutions: combined Nernst–Planck and multicomponent Fick equations. J. Chem. Soc. Faraday Trans. 89 (15), 27752782.CrossRefGoogle Scholar
Leaist, D.G. & MacEwan, K. 2001 Coupled diffusion of mixed ionic micelles in aqueous sodium dodecyl sulfate $+$ sodium octanoate solutions. J. Phys. Chem. B 105 (3), 690695.CrossRefGoogle Scholar
Lee, G., Luner, A., Marzuola, J. & Harris, D.M. 2021 Dispersion control in pressure-driven flow through bowed rectangular microchannels. Microfluid Nanofluid 25, 34.CrossRefGoogle Scholar
Liu, C., Shang, J. & Zachara, J.M. 2011 Multispecies diffusion models: a study of uranyl species diffusion. Water Resour. Res. 47, W12514.CrossRefGoogle Scholar
Lyklema, J. 2005 Fundamentals of Interface and Colloid Science: Soft Colloids, vol. 5. Elsevier.Google Scholar
Maex, R. 2013 Nernst–Planck Equation, pp. 17. Springer.Google Scholar
Majda, A.J. & Kramer, P.R. 1999 Simplified models for turbulent diffusion: theory, numerical modelling, and physical phenomena. Phys. Rep. 314, 237574.CrossRefGoogle Scholar
Marbach, S. & Alim, K. 2019 Active control of dispersion within a channel with flow and pulsating walls. Phys. Rev. Fluids 4 (11), 114202.CrossRefGoogle Scholar
Ngo-Cong, D., Mohammed, F.J., Strunin, D.V., Skvortsov, A.T., Mai-Duy, N. & Tran-Cong, T. 2015 Higher-order approximation of contaminant transport equation for turbulent channel flows based on centre manifolds and its numerical solution. J. Hydrol. 525, 87101.CrossRefGoogle Scholar
Oevreeide, I.H., Zoellner, A., Mielnik, M.M. & Stokke, B.T. 2020 Curved passive mixing structures: a robust design to obtain efficient mixing and mass transfer in microfluidic channels. J. Micromech. Microengng 31 (1), 015006.CrossRefGoogle Scholar
Poisson, A. & Papaud, A. 1983 Diffusion coefficients of major ions in seawater. Mar. Chem. 13 (4), 265280.CrossRefGoogle Scholar
Price, W.E. 1988 Theory of the Taylor dispersion technique for three-component-system diffusion measurements. J. Chem. Soc. Faraday Trans. 84 (7), 24312439.CrossRefGoogle Scholar
Ribeiro, A.C.F., Barros, M.C.F., Verissimo, L.M.P., Esteso, M.A. & Leaist, D.G. 2019 Coupled mutual diffusion in aqueous sodium (salicylate $+$ sodium chloride) solutions at $25\,^{\circ }\textrm {C}$. J. Chem. Thermodyn. 138, 282287.CrossRefGoogle Scholar
Rodrigo, M.M., Esteso, M.A., Ribeiro, A.C.F., Valente, A.J.M., Cabral, A.M.T.D.P.V., Verissimo, L.M.P., Musilova, L., Mracek, A. & Leaist, D.G. 2021 Coupled mutual diffusion in aqueous paracetamol $+$ sodium hydroxide solutions. J. Mol. Liq. 334, 116216.CrossRefGoogle Scholar
Rodrigo, M.M., Valente, A.J.M., Esteso, M.A., Cabral, A.M.T.D.P.V. & Ribeiro, A.C.F. 2022 Ternary diffusion in aqueous sodium salicylate $+$ sodium dodecyl sulfate solutions. J. Chem. Thermodyn. 174, 106859.CrossRefGoogle Scholar
Schmuck, M. & Bazant, M.Z. 2015 Homogenization of the Poisson–Nernst–Planck equations for ion transport in charged porous media. SIAM J. Appl. Maths 75 (3), 13691401.CrossRefGoogle Scholar
Sherman, J. & Morrison, W.J. 1950 Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Statist. 21, 124127.CrossRefGoogle Scholar
Smith, R. 1982 Contaminant dispersion in oscillatory flows. J. Fluid Mech. 114, 379398.CrossRefGoogle Scholar
Smith, R. 1983 Longitudinal dispersion coefficients for varying channels. J. Fluid Mech. 130, 299314.CrossRefGoogle Scholar
Stone, H.A., Stroock, A.D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.CrossRefGoogle Scholar
Stroock, A.D., Dertinger, S.K.W., Ajdari, A., Mezic, I., Stone, H.A. & Whitesides, G.M. 2002 Chaotic mixer for microchannels. Science 295 (5555), 647651.CrossRefGoogle ScholarPubMed
Tabrizinejadas, S., Carrayrou, J., Saaltink, M.W., Baalousha, H.M. & Fahs, M. 2021 On the validity of the null current assumption for modeling sorptive reactive transport and electro-diffusion in porous media. Water 13 (16), 2221.CrossRefGoogle Scholar
Taladriz-Blanco, P., Rothen-Rutishauser, B., Petri-Fink, A. & Balog, S. 2019 Precision of Taylor dispersion. Anal. Chem. 91 (15), 99469951.CrossRefGoogle ScholarPubMed
Taylor, G.I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219 (1137), 186203.Google Scholar
Taylor, M. 2012 Random walks, random flows, and enhanced diffusivity in advection–diffusion equations. J. Discrete Continuous Dyn. Syst. 17 (4), 1261.CrossRefGoogle Scholar
Tournassat, C., Steefel, C.I. & Gimmi, T. 2020 Solving the Nernst–Planck equation in heterogeneous porous media with finite volume methods: averaging approaches at interfaces. Water Resour. Res. 56 (3), e2019WR026832.CrossRefGoogle Scholar
Vanysek, P. 1993 Ionic Conductivity and Diffusion at Infinite Dilution. In CRC Hand Book of Chemistry and Physics, pp. 592. CRC.Google Scholar
Vedel, S. & Bruus, H. 2012 Transient Taylor–Aris dispersion for time-dependent flows in straight channels. J. Fluid Mech. 691, 95122.CrossRefGoogle Scholar
Wang, W. & Roberts, A.J. 2013 Self-similarity and attraction in stochastic nonlinear reaction–diffusion systems. SIAM J. Appl. Dyn. Syst. 12 (1), 450486.CrossRefGoogle Scholar
Wu, Z. & Chen, G.Q. 2014 Approach to transverse uniformity of concentration distribution of a solute in a solvent flowing along a straight pipe. J. Fluid Mech. 740, 196213.CrossRefGoogle Scholar
Yotsukura, N. & Sayre, W.W. 1976 Transverse mixing in natural channels. Water Resour. Res. 12 (4), 695704.CrossRefGoogle Scholar
Young, W.R. & Jones, S. 1991 Shear dispersion. Phys. Fluids A 3 (5), 10871101.CrossRefGoogle Scholar
Yuan-Hui, L. & Gregory, S. 1974 Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 38 (5), 703714.CrossRefGoogle Scholar
Supplementary material: Image

Ding Supplementary Movie 1

See "Ding Supplementary Movie Captions"

Download Ding Supplementary Movie 1(Image)
Image 4.4 MB
Supplementary material: Image

Ding Supplementary Movie 2

See "Ding Supplementary Movie Captions"

Download Ding Supplementary Movie 2(Image)
Image 1.2 MB
Supplementary material: PDF

Ding Supplementary Movie Captions

Ding Supplementary Movie Captions

Download Ding Supplementary Movie Captions(PDF)
PDF 105.6 KB