Published online by Cambridge University Press: 08 August 2019
Self-similar turbulent vortex rings are investigated theoretically in the framework of the semi-empirical turbulence theory for the modified Helmholtz equation. The velocity and vorticity fields are established, as well as the transport of passive admixture by turbulent vortex rings. Turbulent vortex rings of propellant gases originating from the muzzle of a gun after a gunshot are an important phenomenon to consider in crime scene reconstruction. In this work, it is shown that this has a significant repercussion on the outcome of backward blood spatter resulting from a gunshot. Turbulent vortex rings of propellant gases skew the distribution of bloodstains on the ground and can either propel blood droplets further from the target, or even turn them backwards towards the target. This is revealed through the final bloodstain locations and the respective distributions of the number of stains and their area as a function of distance from the target for two different shooter-to-target distances. An image of the propagating muzzle gases after bullet ejection is overlaid with the predicted flow field, which reveals satisfactory agreement. Gunshot residue is an important factor in determining the events of a violent crime due to a gunshot and are considered to be entrained and transported by the propellant gases. The self-similar solutions for the flow, vorticity and concentration of gunpowder particles are predicted and the results are shown to be within the measured range of a limited set of experimental data.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.