Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T09:17:40.381Z Has data issue: false hasContentIssue false

Rough or wiggly? Membrane topology and morphology for fouling control

Published online by Cambridge University Press:  14 January 2019

Bowen Ling
Affiliation:
Energy Resources Engineering, Stanford University, Stanford, CA 94305, USA
Ilenia Battiato*
Affiliation:
Energy Resources Engineering, Stanford University, Stanford, CA 94305, USA
*
Email address for correspondence: ibattiat@stanford.edu

Abstract

During filtration in reverse osmosis membranes (ROM), the system performance is dramatically affected by membrane fouling which causes a significant decrease in permeate flux as well as an increase in the energy input required to operate the system. In this work, we develop a model, able to dynamically capture foulant evolution, that couples the transient Navier–Stokes and the advection–diffusion equations, with an adsorption–desorption equation for the foulant accumulation. The model is validated against unsteady measurements of permeate flux as well as steady-state spatial fouling patterns. For a straight channel, we derive a universal scaling relationship between the Sherwood and Bejan numbers, i.e. the dimensionless permeate flux through the membrane and the pressure drop along the channel, respectively, and generalize this result to membranes subject to morphological and/or topological modifications, i.e. whose shape (wiggliness) or surface roughness is altered from the rectangular and flat reference case. We demonstrate that a universal scaling can be identified through the definition of a modified Reynolds number, $Re^{\star }$, that accounts for the additional length scales introduced by the membrane modifications, and a membrane performance index, $\unicode[STIX]{x1D709}$, an aggregate efficiency measure with respect to both clean permeate flux and energy input required to operate the system. Our numerical simulations demonstrate that ‘wiggly’ membranes outperform ‘rough’ membranes for smaller values of $Re^{\star }$, while the trend is reversed at higher $Re^{\star }$. The proposed approach is able to quantitatively investigate, optimize and guide the design of both morphologically and topologically altered membranes under the same framework, while providing insights into the physical mechanisms controlling the overall system performance.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ba, C., Ladner, D. A. & Economy, J. 2010 Using polyelectrolyte coatings to improve fouling resistance of a positively charged nanofiltration membrane. J. Membr. Sci. 347 (1), 250259.10.1016/j.memsci.2009.10.031Google Scholar
Battiato, I. 2012 Self-similarity in coupled Brinkman/Navier–Stokes flows. J. Fluid Mech. 699, 94114.Google Scholar
Battiato, I. 2014 Effective medium theory for drag-reducing micro-patterned surfaces in turbulent ows. Eur. Phys. J. E 37 (3), 1924.Google Scholar
Battiato, I., Bandaru, P. & Tartakovsky, D. M. 2010 Elastic response of carbon nanotube forests to aerodynamic stresses. Phys. Rev. Lett. 105, 144504.10.1103/PhysRevLett.105.144504Google Scholar
Battiato, I. & Rubol, S. 2014 Single-parameter model of vegetated aquatic flows. Water Resour. Res. 50 (8), 63586369.10.1002/2013WR015065Google Scholar
Benito, Y. & Ruiz, M. L. 2002 Reverse osmosis applied to metal finishing wastewater. Desalination 142 (3), 229234.10.1016/S0011-9164(02)00204-7Google Scholar
Bhattacharyya, D., Back, S. L., Kermode, R. I. & Roco, M. C. 1990 Prediction of concentration polarization and flux behavior in reverse osmosis by numerical analysis. J. Membr. Sci. 48 (2–3), 231262.Google Scholar
Bowen, W. R. & Doneva, T. A. 2000 Atomic force microscopy studies of membranes: effect of surface roughness on double-layer interactions and particle adhesion. J. Colloid Interface Sci. 229 (2), 544549.Google Scholar
Brian, P. L. T. 1965 Concentration polar zation in reverse osmosis desalination with variable flux and incomplete salt rejection. Ind. Engng Chem. Fundam. 4 (4), 439445.Google Scholar
Brusilovsky, M., Borden, J. & Hasson, D. 1992 Flux decline due to gypsum precipitation on ro membranes. Desalination 86 (2), 187222.10.1016/0011-9164(92)80033-6Google Scholar
Bucs, S. S., Linares, R. V., Vrouwenvelder, J. S. & Picioreanu, C. 2016 Biofouling in forward osmosis systems: an experimental and numerical study. Water Res. 106, 8697.Google Scholar
Bucs, S. S., Radu, A. I., Lavric, V., Vrouwenvelder, J. S. & Picioreanu, C. 2014 Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: a numerical study. Desalination 343, 2637.Google Scholar
Cath, T. Y., Gormly, S., Beaudry, E. G., Flynn, M. T., Adams, V. D. & Childress, A. E. 2005 Membrane contactor processes for wastewater reclamation in space: part I. Direct osmotic concentration as pretreatment for reverse osmosis. J. Membr. Sci. 257 (1), 8598.Google Scholar
Cetin, E., Eroğlu, İ. & Özkar, S. 2001 Kinetics of gypsum formation and growth during the dissolution of colemanite in sulfuric acid. J. Cryst. Growth 231 (4), 559567.10.1016/S0022-0248(01)01525-1Google Scholar
Chianese, A., Ranauro, R. & Verdone, N. 1999 Treatment of landfill leachate by reverse osmosis. Water Res. 33 (3), 647652.Google Scholar
Elimelech, M. & Phillip, W. A. 2011 The future of seawater desalination: energy, technology, and the environment. Science 333 (6043), 712717.Google Scholar
Elimelech, M., Zhu, X., Childress, A. E. & Hong, S. 1997 Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J. Membr. Sci. 127 (1), 101109.Google Scholar
Fritzmann, C., Löwenberg, J., Wintgens, T. & Melin, T. 2007 State-of-the-art of reverse osmosis desalination. Desalination 216 (1–3), 176.Google Scholar
Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B. & Moulin, P. 2009 Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 43 (9), 23172348.10.1016/j.watres.2009.03.010Google Scholar
Griffith, I. M., Kumar, A. & Stewart, P. 2014 A combined network model for membrane fouling. J. Colloid Interface Sci. 432, 1018.10.1016/j.jcis.2014.06.021Google Scholar
Griffith, I. M., Kumar, A. & Stuart, P. S. 2016 Designing asymmetric multilayered membrane filters with improved performance. J. Membr. Sci. 511, 108118.Google Scholar
Griffiths, I. M., Howell, P. D. & Shipley, R. J. 2013 Control and optimization of solute transport in a thin porous tube. Phys. Fluids 25 (3), 033101.Google Scholar
Guillen, G. & Hoek, E. M. V. 2009 Modeling the impacts of feed spacer geometry on reverse osmosis and nanofiltration processes. Chem. Engng J. 149 (1), 221231.10.1016/j.cej.2008.10.030Google Scholar
Jones, K. L. & O’Melia, C. R. 2000 Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of ph and ionic strength. J. Membr. Sci. 165 (1), 3146.10.1016/S0376-7388(99)00218-5Google Scholar
Jonsson, G. & Boesen, C. E. 1977 Concentration polarization in a reverse osmosis test cell. Desalination 21 (1), 110.Google Scholar
Kang, G., Liu, M., Lin, B., Cao, Y. & Yuan, Q. 2007a A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly (ethylene glycol). Polymer 48 (5), 11651170.10.1016/j.polymer.2006.12.046Google Scholar
Kang, G.-D., Gao, C.-J., Chen, W.-D., Jie, X.-M., Cao, Y.-M. & Yuan, Q. 2007b Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane. J. Membr. Sci. 300 (1), 165171.10.1016/j.memsci.2007.05.025Google Scholar
Kang, P. K., Lee, W., Lee, S. & Kim, A. S. 2017 Origin of structural parameter inconsistency in forward osmosis models: a pore-scale cfd study. Desalination 421, 4760.Google Scholar
Kim, S. & Hoek, E. M. V. 2005 Modeling concentration polarization in reverse osmosis processes. Desalination 186 (1–3), 111128.10.1016/j.desal.2005.05.017Google Scholar
Ladner, D., Steele, M., Weir, A., Hristovski, K. & Westerhoff, P. 2012 Functionalized nanoparticle interactions with polymeric membranes. J. Hazard. Mater. 211, 288295.Google Scholar
Lee, K. L., Baker, R. W. & Lonsdale, H. K. 1981 Membranes for power generation by pressure-retarded osmosis. J. Membr. Sci. 8 (2), 141171.Google Scholar
Lee, S. & Lee, C.-H. 2000 Effect of operating conditions on caso4 scale formation mechanism in nanofiltration for water softening. Water Res. 34 (15), 38543866.Google Scholar
Ling, B., Oostrom, M., Battiato, I. & Tartakosvky, A. M. 2018 Hydrodynamic dispersion in thin channels with micro-structured porous walls. Phys. Fluids 30 (7).10.1063/1.5031776Google Scholar
Ling, B., Tartakovsky, A. M. & Battiato, I. 2016 Dispersion controlled by permeable surfaces: surface properties and scaling. J. Fluid Mech. 801, 1342.Google Scholar
Lyster, E. & Cohen, Y. 2007 Numerical study of concentration polarization in a rectangular reverse osmosis membrane channel: permeate flux variation and hydrodynamic end effects. J. Membr. Sci. 303 (1), 140153.Google Scholar
Ma, S. & Song, L. 2006 Numerical study on permeate flux enhancement by spacers in a crossflow reverse osmosis channel. J. Membr. Sci. 284 (1), 102109.10.1016/j.memsci.2006.07.022Google Scholar
Maruf, S. H., Greenberg, A. R., Pellegrino, J. & Ding, Y. 2014 Fabrication and characterization of a surface-patterned thin film composite membrane. J. Membr. Sci. 452, 1119.Google Scholar
Maruf, S. H., Rickman, M., Wang, L., Mersch, J. IV, Greenberg, A. R., Pellegrino, J. & Ding, Y. 2013a Influence of sub-micron surface patterns on the deposition of model proteins during active filtration. J. Membr. Sci. 444, 420428.Google Scholar
Maruf, S. H., Wang, L., Greenberg, A. R., Pellegrino, J. & Ding, Y. 2013b Use of nanoimprinted surface patterns to mitigate colloidal deposition on ultrafiltration membranes. J. Membr. Sci. 428, 598607.Google Scholar
Matin, A., Khan, Z., Zaidi, S. M. J. & Boyce, M. C. 2011 Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention. Desalination 281, 116.Google Scholar
McCool, B. C., Rahardianto, A., Faria, J., Kovac, K., Lara, D. & Cohen, Y. 2010 Feasibility of reverse osmosis desalination of brackish agricultural drainage water in the san joaquin valley. Desalination 261 (3), 240250.10.1016/j.desal.2010.05.031Google Scholar
McCutcheon, J. R. & Elimelech, M. 2006 Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J. Membr. Sci. 284 (1), 237247.Google Scholar
Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. 2017 Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356 (6343), eaab0530.Google Scholar
Park, M. & Kim, J. H. 2013 Numerical analysis of spacer impacts on forward osmosis membrane process using concentration polarization index. J. Membr. Sci. 427, 1020.Google Scholar
Peters, T. A. 1998 Purification of landfill leachate with reverse osmosis and nanofiltration. Desalination 119 (1–3), 289293.Google Scholar
Rahardianto, A., McCool, B. C. & Cohen, Y. 2008 Reverse osmosis desalting of inland brackish water of high gypsum scaling propensity: kinetics and mitigation of membrane mineral scaling. Environ. Sci. Technol. 42 (12), 42924297.10.1021/es702463aGoogle Scholar
Rahardianto, A., McCool, B. C. & Cohen, Y. 2010 Accelerated desupersaturation of reverse osmosis concentrate by chemically-enhanced seeded precipitation. Desalination 264 (3), 256267.Google Scholar
Rahardianto, A., Shih, W.-Y., Lee, R.-W. & Cohen, Y. 2006 Diagnostic characterization of gypsum scale formation and control in RO membrane desalination of brackish water. J. Membr. Sci. 279 (1), 655668.Google Scholar
Rubol, S., Battiato, I. & de Barros, F. P. J. 2016 Vertical dispersion in vegetated shear flows. Water Resour. Res. 52 (10), 80668080.Google Scholar
Rubol, S., Ling, B. & Battiato, I. 2018 Universal scaling-law for flow resistance over canopies with complex morphology. Sci. Rep. 8 (1), 44304445.Google Scholar
Sablani, S. S., Goosen, M. F., Al-Belushi, R. & Wilf, M. 2001 Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination 141 (3), 269289.Google Scholar
Sagiv, A., Zhu, A., Christofides, P. D., Cohen, Y. & Semiat, R. 2014 Analysis of forward osmosis desalination via two-dimensional fem model. J. Membr. Sci. 464, 161172.10.1016/j.memsci.2014.04.001Google Scholar
Sanaei, P. & Cummings, L. J. 2017 Flow and fouling in membrane filters: effects of membrane morphology. J. Fluid Mech. 818, 744771.10.1017/jfm.2017.102Google Scholar
Sanaei, P., Richardson, G. W., Witelski, T. & Cummings, L. J. 2016 Flow and fouling in a pleated membrane filter. J. Fluid Mech. 795, 3659.Google Scholar
Sanei, P. & Cummings, L. J. 2018 Membrane filtration with complex branching pore morphology. Phys. Rev. Fluid 3 (094305).Google Scholar
Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Mariñas, B. J. & Mayes, A. M. 2008 Science and technology for water purification in the coming decades. Nature 452 (7185), 301310.Google Scholar
Sheikholeslami, R. & Ong, H. W. K. 2003 Kinetics and thermodynamics of calcium carbonate and calcium sulfate at salinities up to 1.5 m. Desalination 157 (1–3), 217234.Google Scholar
Shih, W.-Y., Rahardianto, A., Lee, R.-W. & Cohen, Y. 2005 Morphometric characterization of calcium sulfate dihydrate (gypsum) scale on reverse osmosis membranes. J. Membr. Sci. 252 (1), 253263.Google Scholar
Suwarno, S. R., Chen, X., Chong, T. H., Puspitasari, V. L., McDougald, D., Cohen, Y., Rice, S. A. & Fane, A. G. 2012 The impact of flux and spacers on biofilm development on reverse osmosis membranes. J. Membr. Sci. 405, 219232.Google Scholar
Takatori, S. C. & Brady, J. F. 2017 Inertial effects on the stress generation of active fluids. Phys. Rev. Fluid. 2 (9), 094305.Google Scholar
Vrijenhoek, E. M., Hong, S. & Elimelech, M. 2001 Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J. Membr. Sci. 188 (1), 115128.Google Scholar
Xie, P., Murdoch, L. C. & Ladner, D. A. 2014 Hydrodynamics of sinusoidal spacers for improved reverse osmosis performance. J. Membr. Sci. 453, 9299.Google Scholar
Zhang, R., Liu, Y., He, M., Su, Y., Zhao, X., Elimelech, M. & Jiang, Z. 2016 Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem. Soc. Rev. 45, 58885924.Google Scholar