Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T02:55:40.676Z Has data issue: false hasContentIssue false

Role of Darrieus–Landau instability in propagation of expanding turbulent flames

Published online by Cambridge University Press:  10 July 2018

Sheng Yang
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Abhishek Saha*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Zirui Liu
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Chung K. Law
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA Center for Combustion Energy, Tsinghua University, Beijing 100084, China
*
Email address for correspondence: asaha010112@gmail.com

Abstract

In this paper we study the essential role of Darrieus–Landau (DL), hydrodynamic, cellular flame-front instability in the propagation of expanding turbulent flames. First, we analyse and compare the characteristic time scales of flame wrinkling under the simultaneous actions of DL instability and turbulent eddies, based on which three turbulent flame propagation regimes are identified, namely, instability dominated, instability–turbulence interaction and turbulence dominated regimes. We then perform experiments over an extensive range of conditions, including high pressures, to promote and manipulate the DL instability. The results clearly demonstrate the increase in the acceleration exponent of the turbulent flame propagation as these three regimes are traversed from the weakest to the strongest, which are respectively similar to those of the laminar cellularly unstable flame and the turbulent flame without flame-front instability, and thus validating the scaling analysis. Finally, based on the scaling analysis and the experimental results, we propose a modification of the conventional turbulent flame regime diagram to account for the effects of DL instability.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Gayed, R. G., Bradley, D. & Lawes, M. 1987 Turbulent burning velocities: a general correlation in terms of straining rates. Proc. R. Soc. Lond. A 414 (1847), 389413.Google Scholar
Addabbo, R., Bechtold, J. K. & Matalon, M. 2002 Wrinkling of spherically expanding flames. Proc. Combust. Inst. 29 (2), 15271535.Google Scholar
Akkerman, V. & Bychkov, V. 2005 Velocity of weakly turbulent flames of finite thickness. Combust. Theor. Model. 9 (2), 323351.Google Scholar
Akkerman, V., Bychkov, V. & Eriksson, L.-E. 2007 Numerical study of turbulent flame velocity. Combust. Flame 151 (3), 452471.Google Scholar
Bauwens, C. R., Bergthorson, J. M. & Dorofeev, S. B. 2017 On the interaction of the Darrieus–Landau instability with weak initial turbulence. Proc. Combust. Inst. 36 (2), 28152822.Google Scholar
Bell, J. B., Day, M. S., Shepherd, I. G., Johnson, M. R., Cheng, R. K., Grcar, J. F., Beckner, V. E. & Lijewski, M. J. 2005 Numerical simulation of a laboratory-scale turbulent v-flame. Proc. Natl Acad. Sci. USA 102 (29), 1000610011.Google Scholar
Boughanem, H. & Trouvé, A. 1998 The domain of influence of flame instabilities in turbulent premixed combustion. Symp. (Int) Combust. 27 (1), 971978.Google Scholar
Bradley, D. 1992 How fast can we burn? Proc. Combust. Inst. 24 (1), 247262.Google Scholar
Bradley, D., Lawes, M., Liu, K. & Mansour, M. S. 2013 Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures. Proc. Combust. Inst. 34 (1), 15191526.Google Scholar
Bray, K. N. C. 1990 Studies of the turbulent burning velocity. Proc. R. Soc. Lond. A 431 (1882), 315335.Google Scholar
Burke, M. P., Chen, Z., Ju, Y. & Dryer, F. L. 2009 Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames. Combust. Flame 156 (4), 771779.Google Scholar
Bychkov, V. 2003 Importance of the darrieus-landau instability for strongly corrugated turbulent flames. Phys. Rev. E 68 (6), 066304.Google Scholar
Chaudhuri, S., Akkerman, V. & Law, C. K. 2011 Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E 84 (2), 026322.Google Scholar
Chaudhuri, S., Saha, A. & Law, C. K. 2015 On flame–turbulence interaction in constant-pressure expanding flames. Proc. Combust. Inst. 35 (2), 13311339.Google Scholar
Chaudhuri, S., Wu, F. & Law, C. K. 2013 Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations. Phys. Rev. E 88 (3), 033005.Google Scholar
Chaudhuri, S., Wu, F., Zhu, D. & Law, C. K. 2012 Flame speed and self-similar propagation of expanding turbulent premixed flames. Phys. Rev. Lett. 108 (4), 044503.Google Scholar
Chen, J. H. & Im, H. G. 1998 Correlation of flame speed with stretch in turbulent premixed methane/air flames. Symp. (Int) Combust. 27 (1), 819826.Google Scholar
Creta, F., Lamioni, R., Lapenna, P. E. & Troiani, G. 2016 Interplay of Darrieus–Landau instability and weak turbulence in premixed flame propagation. Phys. Rev. E 94, 053102.Google Scholar
Creta, F. & Matalon, M. 2011 Propagation of wrinkled turbulent flames in the context of hydrodynamic theory. J. Fluid Mech. 680, 225264.Google Scholar
Darrieus, G. 1938 Propagation dun front de flamme. La Technique Moderne 30, 18.Google Scholar
Driscoll, J. F. 2008 Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34 (1), 91134.Google Scholar
Filatyev, S. A., Driscoll, J. F., Carter, C. D. & Donbar, J. M. 2005 Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates, and surface densities. Combust. Flame 141 (1), 121.Google Scholar
Fogla, N., Creta, F. & Matalon, M. 2013 Influence of the darrieus-landau instability on the propagation of planar turbulent flames. Proc. Combust. Inst. 34 (1), 15091517.Google Scholar
Fogla, N., Creta, F. & Matalon, M. 2015 Effect of folds and pockets on the topology and propagation of premixed turbulent flames. Combust. Flame 162 (7), 27582777.Google Scholar
Fogla, N., Creta, F. & Matalon, M. 2017 The turbulent flame speed for low-to-moderate turbulence intensities: hydrodynamic theory versus experiments. Combust. Flame 175, 155169.Google Scholar
Jiang, L. J., Shy, S. S., Li, W. Y., Huang, H. M. & Nguyen, M. T. 2016 High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames. Combust. Flame 172, 173182.Google Scholar
Kee, R. J., Gracer, J. F., Miller, J. A. & Meeks, E.1985 Premix: a fortran program for modeling steady laminar one-dimensional premixed flames. Tech. Rep. Sandia National Laboratories, Report SAND85-8249.Google Scholar
Kerstein, A. R., Ashurst, W. T. & Williams, F. A. 1988 Field equation for interface propagation in an unsteady homogeneous flow field. Phys. Rev. A 37, 27282731.Google Scholar
Kido, H., Nakahara, M., Nakashima, K. & Hashimoto, J. 2002 Influence of local flame displacement velocity on turbulent burning velocity. Proc. Combust. Inst. 29 (2), 18551861.Google Scholar
Kobayashi, H., Kawabata, Y. & Maruta, K. 1998 Experimental study on general correlation of turbulent burning velocity at high pressure. Symp. (Int) Combust. 27 (1), 941948.Google Scholar
Kobayashi, H., Seyama, K., Hagiwara, H. & Ogami, Y. 2005 Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature. Proc. Combust. Inst. 30 (1), 827834.Google Scholar
Landau, L. D. 1944 On the theory of slow combustion. Acta Physicochim. USSR 19 (1), 7785.Google Scholar
Lipatnikov, A. N. & Chomiak, J. 2005 Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust. Sci. 31 (1), 173.Google Scholar
Matalon, M. 2007 Intrinsic flame instabilities in premixed and nonpremixed combustion. Annu. Rev. Fluid Mech. 39, 163191.Google Scholar
Peters, N. 1999 The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107132.Google Scholar
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.Google Scholar
Pope, S. B. 1985 Pdf methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11 (2), 119192.Google Scholar
Pope, S. B. 2000 Turbulent Flows. chap. 6, Cambridge University Press.Google Scholar
Savarianandam, V. R. & Lawn, C. J. 2006 Burning velocity of premixed turbulent flames in the weakly wrinkled regime. Combust. Flame 146 (1), 118.Google Scholar
Searby, G. & Clavin, P. 1986 Weakly turbulent, wrinkled flames in premixed gases. Combust. Sci. Technol. 46 (3–6), 167193.Google Scholar
Sivashinsky, G. I. 1988 Cascade-renormalization theory of turbulent flame speed. Combust. Sci. Technol. 62 (1–3), 7796.Google Scholar
Troiani, G., Creta, F. & Matalon, M. 2015 Experimental investigation of Darrieus–Landau instability effects on turbulent premixed flames. Proc. Combust. Inst. 35 (2), 14511459.Google Scholar
Venkateswaran, P., Marshall, A. D., Seitzman, J. M. & Lieuwen, T. C. 2014 Turbulent consumption speeds of high hydrogen content fuels from 1–20 atm. Trans. ASME J. Engng Gas Turbines Power 136 (1), 011504.Google Scholar
Wang, H., You, X., Joshi, A., Davis, S., Laskin, A., Egolfopoulos, F. & Law, C. K.2007 USC mech version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds. Available at:http://ignis.usc.edu/Mechanisms/USC-Mech%20II/USC_Mech%20II.htm.Google Scholar
Wu, F., Saha, A., Chaudhuri, S. & Law, C. K. 2015 Propagation speeds of expanding turbulent flames of c 4 to c 8 n-alkanes at elevated pressures: experimental determination, fuel similarity, and stretch-affected local extinction. Proc. Combust. Inst. 35 (2), 15011508.Google Scholar
Yang, S., Saha, A., Wu, F. & Law, C. K. 2016 Morphology and self-acceleration of expanding laminar flames with flame-front cellular instabilities. Combust. Flame 171, 112118.Google Scholar
Yang, S., Yang, X., Wu, F., Ju, Y. & Law, C. K. 2017 Laminar flame speeds and kinetic modeling of H2/O2/diluent mixtures at sub-atmospheric and elevated pressures. Proc. Combust. Inst. 36 (1), 491498.Google Scholar
Supplementary material: File

Yang et al. supplementary material

Yang et al. supplementary material 1

Download Yang et al. supplementary material(File)
File 708.7 KB