Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T04:16:54.213Z Has data issue: false hasContentIssue false

Resolvent-based estimation of space–time flow statistics

Published online by Cambridge University Press:  25 November 2019

Aaron Towne*
Affiliation:
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI48109, USA
Adrián Lozano-Durán
Affiliation:
Center for Turbulence Research, Stanford University, Stanford, CA94305, USA
Xiang Yang
Affiliation:
Department of Mechanical and Nuclear Engineering, Penn State University, State College, PA16802, USA
*
Email address for correspondence: towne@umich.edu

Abstract

We develop a method to estimate space–time flow statistics from a limited set of known data. While previous work has focused on modelling spatial or temporal statistics independently, space–time statistics carry fundamental information about the physics and coherent motions of the flow and provide a starting point for low-order modelling and flow control efforts. The method is derived using a statistical interpretation of resolvent analysis. The central idea of our approach is to use known data to infer the statistics of the nonlinear terms that constitute a forcing on the linearized Navier–Stokes equations, which in turn imply values for the remaining unknown flow statistics through application of the resolvent operator. Rather than making an a priori assumption that the flow is dominated by the leading singular mode of the resolvent operator, as in some previous approaches, our method allows the known input data to select the most relevant portions of the resolvent operator for describing the data, making it well suited for high-rank turbulent flows. We demonstrate the predictive capabilities of the method, which we call resolvent-based estimation, using two examples: the Ginzburg–Landau equation, which serves as a convenient model for a convectively unstable flow, and a turbulent channel flow at low Reynolds number.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J. 1994 Stochastic estimation of conditional structure: a review. Appl. Sci. Res. 53 (3), 291303.CrossRefGoogle Scholar
del Álamo, J. C. & Jiménez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.CrossRefGoogle Scholar
del Álamo, J. C. & Jiménez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 526.CrossRefGoogle Scholar
Bagheri, S., Henningson, D. S., Hoepffner, J. & Schmid, P. J. 2009 Input-output analysis and control design applied to a linear model of spatially developing flows. Appl. Mech. Rev. 62 (2), 020803.Google Scholar
Bendat, J. S. & Piersol, A. G. 1990 Random Data: Analysis and Measurement Procedures. Wiley.Google Scholar
Beneddine, S., Sipp, D., Arnault, A., Dandois, J. & Lesshafft, L. 2016 Conditions for validity of mean flow stability analysis. J. Fluid Mech. 798, 485504.CrossRefGoogle Scholar
Beneddine, S., Yegavian, R., Sipp, D. & Leclaire, B. 2017 Unsteady flow dynamics reconstruction from mean flow and point sensors: an experimental study. J. Fluid Mech. 824, 174201.CrossRefGoogle Scholar
Bonnet, J. P., Cole, D. R., Delville, J., Glauser, M. N. & Ukeiley, L. S. 1994 Stochastic estimation and proper orthogonal decomposition: complementary techniques for identifying structure. Exp. Fluids 17 (5), 307314.CrossRefGoogle Scholar
Chen, K. K. & Rowley, C. W. 2011 H 2 optimal actuator and sensor placement in the linearised complex Ginzburg–Landau system. J. Fluid Mech. 681, 241260.CrossRefGoogle Scholar
Choi, H. & Moin, P. 1990 On the space-time characteristics of wall-pressure fluctuations. Phys. Fluids 2 (8), 14501460.CrossRefGoogle Scholar
Encinar, A., Lozano-Durén, A. & Jiménez, J. 2018 Reconstructing channel turbulence from wall observations. In Proceedings of the Summer Program. Center for Turbulence Research, Stanford University.Google Scholar
Farrell, B. F. & Ioannou, P. J. 1993 Stochastic forcing of the linearized Navier–Stokes equations. Phys. Fluids 5 (11), 26002609.CrossRefGoogle Scholar
Gómez, F., Blackburn, H. M., Rudman, M., Sharma, A. S. & McKeon, B. J. 2016a A reduced-order model of three-dimensional unsteady flow in a cavity based on the resolvent operator. J. Fluid Mech. 798, R2.CrossRefGoogle Scholar
Gómez, F., Sharma, A. S. & Blackburn, H. M. 2016b Estimation of unsteady aerodynamic forces using pointwise velocity data. J. Fluid Mech. 804, R4.CrossRefGoogle Scholar
Hunt, R. E. & Crighton, D. G. 1991 Instability of flows in spatially developing media. Proc. R. Soc. Lond. A 435, 109128.CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2010 Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. J. Fluid Mech. 664, 5173.CrossRefGoogle Scholar
Illingworth, S. J., Monty, J. P. & Marusic, I. 2018 Estimating large-scale structures in wall turbulence using linear models. J. Fluid Mech. 842, 146162.CrossRefGoogle Scholar
Jeun, J., Nichols, J. W. & Jovanović, M. R. 2016 Input-output analysis of high-speed axisymmetric isothermal jet noise. Phys. Fluids 28 (4), 047101.CrossRefGoogle Scholar
Jovanović, M. & Bamieh, B. 2001 Modeling flow statistics using the linearized Navier–Stokes equations. In Proceedings of the 40th IEEE Conference on Decision and Control, vol. 5, pp. 49444949. IEEE.Google Scholar
Jovanović, M. R. & Bamieh, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.CrossRefGoogle Scholar
Kim, J. & Hussain, F. 1993 Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids 5 (3), 695706.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.CrossRefGoogle Scholar
Meseguer, Á. & Trefethen, L. N. 2003 Linearized pipe flow to Reynolds number 107. J. Comput. Phys. 186 (1), 178197.CrossRefGoogle Scholar
Moarref, R. & Jovanović, M. R. 2012 Model-based design of transverse wall oscillations for turbulent drag reduction. J. Fluid Mech. 707, 205240.CrossRefGoogle Scholar
Moarref, R., Jovanović, M. R., Tropp, J. A., Sharma, A. S. & McKeon, B. J. 2014 A low-order decomposition of turbulent channel flow via resolvent analysis and convex optimization. Phys. Fluids 26 (5), 051701.CrossRefGoogle Scholar
Morra, P., Semeraro, O., Henningson, D. S. & Cossu, C. 2019 On the relevance of Reynolds stresses in resolvent analyses of turbulent wall-bounded flows. J. Fluid Mech. 867, 969984.CrossRefGoogle Scholar
Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to Re 𝜏 = 590. Phys. Fluids 11 (4), 943945.CrossRefGoogle Scholar
Park, G. I. & Moin, P. 2016 Space-time characteristics of wall-pressure and wall shear-stress fluctuations in wall-modeled large eddy simulation. Phys. Rev. Fluids 1 (2), 024404.CrossRefGoogle ScholarPubMed
Pickering, E. M., Rigas, G., Sipp, D., Schmidt, O. T. & Colonius, T.2019 Eddy viscosity for resolvent-based jet noise models. AIAA Paper no. 2019-2454.CrossRefGoogle Scholar
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54 (2), 263288.CrossRefGoogle Scholar
Sasaki, K., Piantanida, S., Cavalieri, A. V. G. & Jordan, P. 2017 Real-time modelling of wavepackets in turbulent jets. J. Fluid Mech. 821, 458481.CrossRefGoogle Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Schmidt, O. T., Towne, A., Rigas, G., Colonius, T. & Brès, G. A. 2018 Spectral analysis of jet turbulence. J. Fluid Mech. 855, 953982.CrossRefGoogle Scholar
Semeraro, O., Jaunet, V., Jordan, P., Cavalieri, A. V. G. & Lesshafft, L.2016 Stochastic and harmonic optimal forcing in subsonic jets. AIAA Paper no. 2016-2935.CrossRefGoogle Scholar
Shampine, L. F. & Reichelt, M. W. 1997 The Matlab ODE suite. SIAM J. Sci. Comput. 18 (1), 122.CrossRefGoogle Scholar
Sharma, A. S. & McKeon, B. J. 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. ii. symmetries and transformations. Q. Appl. Maths 45 (3), 573582.CrossRefGoogle Scholar
Symon, S., Sipp, D. & McKeon, B. J. 2019 A tale of two airfoils: resolvent-based modelling of an oscillator versus an amplifier from an experimental mean. J. Fluid Mech. 881, 5183.CrossRefGoogle Scholar
Thomareis, N. & Papadakis, G. 2018 Resolvent analysis of separated and attached flows around an airfoil at transitional Reynolds number. Phys. Rev. Fluids 3, 073901.CrossRefGoogle Scholar
Towne, A., Brès, G. A. & Lele, S. K. 2016 Toward a resolvent-based statisitical jet-noise model. In Annual Research Briefs. Center for Turbulence Research, Stanford University.Google Scholar
Towne, A., Brès, G. A. & Lele, S. K.2017 A statistical jet-noise model based on the resolvent framework. AIAA Paper no. 2017-3406.CrossRefGoogle Scholar
Towne, A., Schmidt, O. T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Welch, P. 1967 The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15 (2), 7073.CrossRefGoogle Scholar
Yeh, C.-A. & Taira, K. 2019 Resolvent-analysis-based design of airfoil separation control. J. Fluid Mech. 867, 572610.CrossRefGoogle Scholar
Zare, A., Chen, Y., Jovanović, M. R. & Georgiou, T. T. 2017 Low-complexity modeling of partially available second-order statistics: theory and an efficient matrix completion algorithm. IEEE Trans. Autom. Control 62 (3), 13681383.CrossRefGoogle Scholar
Zare, A., Jovanović, M. R. & Georgiou, T. T. 2017 Colour of turbulence. J. Fluid Mech. 812, 636680.CrossRefGoogle Scholar