Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T06:07:25.616Z Has data issue: false hasContentIssue false

The pre-transitional Klebanoff modes and other boundary-layer disturbances induced by small-wavelength free-stream vorticity

Published online by Cambridge University Press:  20 October 2009

PIERRE RICCO*
Affiliation:
Department of Mechanical Engineering, King's College London, Strand, London WC2R 2LS, UK
*
Email address for correspondence: pierre.ricco@kcl.ac.uk

Abstract

The response of the Blasius boundary layer to free-stream vortical disturbances of the convected gust type is studied. The vorticity signature of the boundary layer is computed through the boundary-region equations, which are the rigorous asymptotic limit of the Navier–Stokes equations for low-frequency disturbances. The method of matched asymptotic expansion is employed to obtain the initial and outer boundary conditions. For the case of forcing by a two-dimensional gust, the effect of a wall-normal wavelength comparable with the boundary-layer thickness is taken into account. The gust viscous dissipation and upward displacement due to the mean boundary layer produce significant changes on the fluctuations within the viscous region. The same analysis also proves useful for computing to second-order accuracy the boundary-layer response induced by a three-dimensional gust with spanwise wavelength comparable with the boundary-layer thickness. It also follows that the boundary-layer fluctuations of the streamwise velocity match the corresponding free-stream velocity component. The velocity profiles are compared with experimental data, and good agreement is attained.

The generation of Tollmien–Schlichting waves by the nonlinear mixing between the two-dimensional unsteady vorticity fluctuations and the mean flow distortion induced by localized wall roughness and suction is also investigated. Gusts with small wall-normal wavelengths generate significantly different amplitudes of the instability waves for a selected range of forcing frequencies. This is primarily due to the disparity between the streamwise velocity fluctuations in the free stream and within the boundary layer.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, L. & Bridges, T. B. 2003 a Hydrodynamic stability of the Ekman boundary layer including interaction with a compliant surface: a numerical framework. Eur. J. Mech. B 22, 239258.CrossRefGoogle Scholar
Allen, L. & Bridges, T. J. 2002 Numerical exterior algebra and the compound matrix method. Numer. Math. 92, 197232.CrossRefGoogle Scholar
Allen, L. & Bridges, T. J. 2003 b Flow past a swept wing with a compliant surface: stabilizing the attachment-line boundary layer. Studies Appl. Math. 110, 333349.CrossRefGoogle Scholar
Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11 (1), 134150.CrossRefGoogle Scholar
Anthony, R. J., Jones, T. V. & LaGraff, J. E. 2005 High frequency surface heat flux imaging of bypass transition. J. Turbom. 127, 241250.CrossRefGoogle Scholar
Arnal, D. & Juillen, J. C. 1978 Contribution expérimental a l'etude de la receptivite d'une couche limite laminaire, a la turbulence de l'ecoulement general. Rep. No. CERT RT 1/5018 AYD. ONERA.Google Scholar
Batchelor, G. K. 1946 The theory of axisymmetric turbulence. Proc. R. Soc. Lond. A 186 (1007), 480502.Google Scholar
Bradshaw, P. 1965 The effect of wind-tunnel screens on nominally two-dimensional boundary layers. J. Fluid Mech. 22, 679687.CrossRefGoogle Scholar
Cebeci, T. 2002 Convective Heat Transfer. Springer.CrossRefGoogle Scholar
Chandrasekhar, S. 1950 The theory of axisymmetric turbulence. Proc. R. Soc. Lond. A 242 (855), 557577.Google Scholar
Choudhari, M. 1994 a Localized and distributed boundary-layer receptivity to convected unsteady wake in free stream. Contractor Rep. 4578. NASA Langley Research Center.Google Scholar
Choudhari, M. 1994 b Roughness-induced generation of crossflow vortices in three-dimensional boundary layers. Theoret. Comput. Fluid Dyn. 6, 130.CrossRefGoogle Scholar
Choudhari, M. 1996 Boundary layer receptivity to three-dimensional unsteady vortical disturbances in the free stream. Paper 96-0181. AIAA.CrossRefGoogle Scholar
Choudhari, M. & Streett, C. L. 1992 A finite Reynolds number approach for the prediction of boundary-layer receptivity in localized regions. Phys. Fluids 4 (11), 24952514.CrossRefGoogle Scholar
Crow, S. C. 1966 The spanwise perturbation of two-dimensional boundary-layers. J. Fluid Mech. 24, 153164.CrossRefGoogle Scholar
Davey, A. 1982 A difficult numerical calculation concerning the stability of the Blasius boundary layer. In Stability in the Mechanics of Continua (ed. Schroeder, F. H.), pp. 365372. Springer.CrossRefGoogle Scholar
Dietz, A. J. 1996 Distributed boundary layer receptivity to convected vorticity. Paper 96-2083. AIAA.CrossRefGoogle Scholar
Dietz, A. J. 1998 Boundary-layer receptivity to transient convected disturbances. AIAA J. 36, 11711177.CrossRefGoogle Scholar
Dietz, A. J. 1999 Local boundary-layer receptivity to a convected free-stream disturbance. J. Fluid Mech. 378, 291317.CrossRefGoogle Scholar
Dryden, H. L. 1936 Air flow in the boundary layer near a plate. Rep. 562. NACA.Google Scholar
Duck, P. W., Ruban, A. I. & Zhikharev, C. N. 1996 The generation of Tollmien--Schlichting waves by free-stream turbulence. J. Fluid Mech. 312, 341371.CrossRefGoogle Scholar
Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18 (4), 487488.CrossRefGoogle Scholar
Fasel, H. 2002 Numerical investigation of the interaction of the Klebanoff-mode with a Tollmien–Schlichting wave. J. Fluid Mech. 450, 133.CrossRefGoogle Scholar
Fransson, J. H. M., Matsubara, M. & Alfredsson, P. H. 2005 Transition induced by free-stream turbulence. J. Fluid Mech. 527, 125.CrossRefGoogle Scholar
Goldstein, M. E. 1978 Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles. J. Fluid Mech. 89, 433468.CrossRefGoogle Scholar
Goldstein, M. E. 1983 The evolution of Tollmein–Schlichting waves near a leading edge. J. Fluid Mech. 127, 5981.CrossRefGoogle Scholar
Goldstein, M. E. 1985 Scattering of acoustic waves into Tollmien–Schlichting waves by small streamwise variations in surface geometry. J. Fluid Mech. 154, 509529.CrossRefGoogle Scholar
Goldstein, M. E. & Leib, S. J. 1993 Three-dimensional boundary layer instability and separation induced by small-amplitude streamwise vorticity in the upstream flow. J. Fluid Mech. 246, 2141.CrossRefGoogle Scholar
Goldstein, M. E., Leib, S. J. & Cowley, S. J. 1992 Distortion of a flat plate boundary layer by free stream vorticity normal to the plate. J. Fluid Mech. 237, 231260.CrossRefGoogle Scholar
Goldstein, M. E. & Sescu, A. 2008 Boundary-layer transition at high free-stream disturbance levels – beyond Klebanoff modes. J. Fluid Mech. 613, 95124.CrossRefGoogle Scholar
Goldstein, M. E. & Wundrow, D. W. 1998 On the environmental realizability of algebraically growing disturbances and their relation to Klebanoff modes. Theoret. Comput. Fluid Dyn. 10, 171186.CrossRefGoogle Scholar
Gulyaev, A. N., Kozlov, V. E., Kuzenetsov, V. R., Mineev, B. I. & Sekundov, A. N. 1989 Interaction of a laminar boundary layer with external turbulence. Izv. Akad. Nauk. SSSR Mekh. Zhid. Gaza 6, 700710.Google Scholar
Hernon, D., Walsh, E. J. & McEligot, D. M. 2007 Experimental investigation into the routes to bypass transition and the shear-sheltering phenomenon. J. Fluid Mech. 591, 461479.CrossRefGoogle Scholar
Huang, J-C. & Johnson, M. W. 2007 The influence of compliant surfaces on bypass transition. Exp. Fluids 42, 711718.CrossRefGoogle Scholar
Inasawa, A., Lundell, F., Matsubara, M., Kohama, Y. & Alfredsson, P. H. 2003 Velocity statistics and flow structures observed in bypass transition using stereo PTV. Exp. Fluids 34, 242252.CrossRefGoogle Scholar
Jacobs, R. G. & Durbin, P. A. 2001 Simulation of bypass transition. J. Fluid Mech. 428, 185212.CrossRefGoogle Scholar
Kemp, N. 1951 The laminar three-dimensional boundary layer and a study of the flow past a side edge. MSc thesis, Cornell University, Ithaca, NY.Google Scholar
Kendall, J. M. 1985 Experimental study of disturbances produced in a pre-transitional boundary layer. Paper 85-1695. AIAA.CrossRefGoogle Scholar
Kendall, J. M. 1990 Boundary layer receptivity to free stream turbulence. Paper 90-1504. AIAA.CrossRefGoogle Scholar
Kendall, J. M. 1991 Studies on laminar boundary layer receptivity to free-stream turbulence near a leading edge. In Boundary Layer Stability and Transition to Turbulence (ed. Reda, D. C., Reed, H. L. & Kobayashi, R.), vol. 114, pp. 2330. ASME FED.Google Scholar
Kerschen, E. J. 1991 Linear and nonlinear receptivity to vortical free-stream disturbances. In Boundary Layer Stability and Turbulence (ed. Reda, D. C., Reed, H. L. & Kobayashi, R. K.), vol. 114, pp. 4348. ASME FED.Google Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Klebanoff, P. S. 1971 Effect of free-stream turbulence on a laminar boundary layer. Bull. Am. Phys. Soc. 16, 1323.Google Scholar
Landahl, M.T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.CrossRefGoogle Scholar
Lardeau, S., Li, N. & Leschziner, M. A. 2007 Large eddy simulations of a transitional boundary layers at high free-stream turbulence intensity and implications for RANS modelling. J. Turbom. 129, 17.CrossRefGoogle Scholar
Leib, S. J., Wundrow, D. W. & Goldstein, M. E. 1999 Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer. J. Fluid Mech. 380, 169203.CrossRefGoogle Scholar
Liu, Y., Zaki, T. A. & Durbin, P. A. 2008 Boundary-layer transition by interaction of discrete and continuous modes. J. Fluid Mech. 604, 199233.CrossRefGoogle Scholar
Luchini, P. 2000 Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289309.CrossRefGoogle Scholar
Malik, M. R. 1990 Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86, 376413.CrossRefGoogle Scholar
Mans, J., Kadijk, E. C., de Lange, H. C. & van Steenhoven, A. A. 2005 Breakdown in a boundary layer exposed to free-stream turbulence. Exp. Fluids 39, 10711083.CrossRefGoogle Scholar
Matsubara, M. & Alfredsson, P. H. 2001 Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149168.CrossRefGoogle Scholar
Nagarajan, S., Lele, S. K. & Ferziger, J. H. 2007 Leading-edge effects in bypass transition. J. Fluid Mech. 572, 471504.CrossRefGoogle Scholar
Ng, B. S. & Reid, W. H. 1979 An initial value method for eigenvalue problems using compound matrices. J. Comput. Phys. 30, 125136.CrossRefGoogle Scholar
Orr, W. M. F. 1907 The stability or instability of steady motions of a perfect liquid and of a viscous liquid. Part I. A perfect liquid. Part II. A viscous liquid. Proc. R. Irish Acad. 27, 938 and 69138.Google Scholar
Ovchinnikov, V., Choudhari, M. M. & Piomelli, U. 2008 Numerical simulations of boundary-layer bypass transition due to high-amplitude free-stream turbulence. J. Fluid Mech. 613, 135169.CrossRefGoogle Scholar
Ricco, P., Tran, D.-L. & Ye, G. 2009 Wall heat transfer effects on Klebanoff modes and Tollmien–Schlichting waves in a compressible boundary layer. Phys. Fluids 21, 118 (024106).CrossRefGoogle Scholar
Ricco, P. & Wu, X. 2007 Response of a compressible laminar boundary layer to free-stream vortical disturbances. J. Fluid Mech. 587, 97138.CrossRefGoogle Scholar
Ruban, A. I. 1985 On the generation of Tollmien–Schlichting waves by sound. Fluid Dyn. 25 (2), 213221.CrossRefGoogle Scholar
Schewe, G. 1983 On the structure and resolution of wall-pressure fluctuations associated with turbulent boundary-layer flow. J. Fluid Mech. 134, 311328.CrossRefGoogle Scholar
Schlichting, H. 1933 Zur Entstehung der Turbulenz bei der Plattenströmung. Nachr. Ges. Wiss. Göttingen Math. Phys. Klasse, 181–208.Google Scholar
Schubauer, G. B. & Skramstad, H. K 1947 Laminar boundary-layer oscillations and transition on a flat plate. Rep. No. NACA-TN-909. NACA.CrossRefGoogle Scholar
Sengupta, T. K. 1992 Solution of the Orr–Sommerfeld equation for high wavenumbers. Comput. Fluids 21 (2), 301303.CrossRefGoogle Scholar
Sengupta, T. K. & Subbaiah, K. V. 2006 Spatial stability for mixed convection boundary layer over a heated horizontal plate. Studies Appl. Math. 117, 265298.CrossRefGoogle Scholar
Sobey, I. J. 2001 Introduction to Interactive Boundary Layer Theory. Oxford University Press.Google Scholar
Sommerfeld, A. 1908 Ein Beitrag zur hydrodynamischen Erklarung der turbulenten Flussigkeitsbewegungen. Atti Fourth Congr. Intl Math. Roma 3, 116124.Google Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to Re θ = 1410. J. Fluid Mech. 187, 6198.CrossRefGoogle Scholar
Taylor, G. I. 1939 Some recent developments in the study of turbulence. In Fifth International Congress for Applied Mechanics (ed. Hartog, J. P. Den & Peters, H.), pp. 294310. Wiley/Chapman and Hall.Google Scholar
Tollmien, W. 1929 Uber die Entstehung der Turbulenz 1. Mitteilung. Nachr. Ges. Wiss. Göttingen Math. Phys. Klasse, 21–44. Translated into English in 1931 as as Rep. No. NACA-TM-609, NACA.Google Scholar
Tsuji, Y., Fransson, J. H. M., Alfredsson, P. H. & Johansson, A. V. 2007 Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 585, 140.CrossRefGoogle Scholar
Volino, R. 2005 An investigation of the scales in transitional boundary layers under high free-stream turbulence conditions. Exp. Fluids 38, 516533.CrossRefGoogle Scholar
Watmuff, J. H. 1998 Detrimental effects of almost immensurably small free stream nonuniformities generated by wind-tunnel screens. AIAA J. 36 (3), 379386.CrossRefGoogle Scholar
Westin, K. J. A., Boiko, A. V., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H. 1994 Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer structure and receptivity. J. Fluid Mech. 281, 193218.CrossRefGoogle Scholar
Wiegel, M. & Wlezien, R. W. 1993 Acoustic receptivity of laminar boundary layers over wavy walls. Paper 93-3280. AIAA.CrossRefGoogle Scholar
Wu, X. 2001 a On local boundary-layer receptivity to vortical disturbances in the free-stream. J. Fluid Mech. 449, 373393.CrossRefGoogle Scholar
Wu, X. 2001 b Receptivity of boundary layers with distributed roughness to vortical and acoustic disturbances: A second-order asymptotic theory and comparison with experiments. J. Fluid Mech. 431, 91133.CrossRefGoogle Scholar
Wu, X. & Choudhari, M. 2003 Linear and nonlinear instabilities of a Blasius boundary layer perturbed by streamwise vortices. Part 2. Intermittent instability induced by long-wavelength Klebanoff modes. J. Fluid Mech. 483, 249286.CrossRefGoogle Scholar
Wundrow, D. W. & Goldstein, M. E. 2001 Effect on a laminar boundary layer of small-amplitude streamwise vorticity in the upstream flow. J. Fluid Mech. 426, 229262.CrossRefGoogle Scholar