Published online by Cambridge University Press: 03 May 2023
The Poiseuille and thermal transpiration flows of a dense gas between two parallel plates are investigated on the basis of the Enskog kinetic equation under the diffuse reflection boundary condition. In contrast to the case of an ideal gas, the density and the gradients of pressure and the normal stress component in the flow direction are not uniform in the direction normal to the plates for a dense gas. The non-uniform normal stress gradient contributes also to the acceleration or deceleration of the thermal transpiration flow for small Knudsen numbers. The profiles of mass and heat flows as well as the net mass flows are obtained for various Knudsen numbers and ratios of the molecular diameter to the distance of plates. In the analysis of the Poiseuille flow, most characteristics of a force-driven flow with a small force are recovered. However, for the case of a dense gas, differences between the force-driven and the present pressure-driven flows are observed even within the linearized regime for small force and pressure gradient, especially at the microscopic level. The behaviour of the velocity distribution functions, in particular, the way in which they approach the ones for the Boltzmann equation as the molecular diameter becomes smaller, is clarified.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.