Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T20:03:19.787Z Has data issue: false hasContentIssue false

Partial coalescence from bubbles to drops

Published online by Cambridge University Press:  07 October 2015

F. H. Zhang
Affiliation:
Division of Physical Sciences and Engineering, and Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
M.-J. Thoraval
Affiliation:
Division of Physical Sciences and Engineering, and Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia Physics of Fluids Group, Faculty of Science and Technology, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
S. T. Thoroddsen*
Affiliation:
Division of Physical Sciences and Engineering, and Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
P. Taborek
Affiliation:
Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
*
Email address for correspondence: sigurdur.thoroddsen@kaust.edu.sa

Abstract

The coalescence of drops is a fundamental process in the coarsening of emulsions. However, counter-intuitively, this coalescence process can produce a satellite, approximately half the size of the original drop, which is detrimental to the overall coarsening. This also occurs during the coalescence of bubbles, while the resulting satellite is much smaller, approximately 10 %. To understand this difference, we have conducted a set of coalescence experiments using xenon bubbles inside a pressure chamber, where we can continuously raise the pressure from 1 up to 85 atm and thereby vary the density ratio between the inner and outer fluid, from 0.005 up to unity. Using high-speed video imaging, we observe a continuous increase in satellite size as the inner density is varied from the bubble to emulsion-droplet conditions, with the most rapid changes occurring as the bubble density grows up to 15 % of that of the surrounding liquid. We propose a model that successfully relates the satellite size to the capillary wave mode responsible for its pinch-off and the overall deformations from the drainage. The wavelength of the primary wave changes during its travel to the apex, with the instantaneous speed adjusting to the local wavelength. By estimating the travel time of this wave mode on the bubble surface, we also show that the model is consistent with the experiments. This wavenumber is determined by both the global drainage as well as the interface shapes during the rapid coalescence in the neck connecting the two drops or bubbles. The rate of drainage is shown to scale with the density of the inner fluid. Empirically, we find that the pinch-off occurs when 60 % of the bubble fluid has drained from it. Numerical simulations using the volume-of-fluid method with dynamic adaptive grid refinement can reproduce these dynamics, as well as show the associated vortical structure and stirring of the coalescing fluid masses. Enhanced stirring is observed for cases with second-stage pinch-offs. Numerous sub-satellites are observed when the length of the top protrusion of the drop exceeds the Rayleigh instability wavelength. We also find a parameter regime where the focusing of more than one capillary wave can pinch-off satellites. One realization shows a sequence of three pinch-offs, where the middle one pinches off a toroidal bubble.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarts, D. G. A. L., Lekkerkerker, H. N. W., Guo, H., Wegdam, G. H. & Bonn, D. 2005 Hydrodynamics of droplet coalescence. Phys. Rev. Lett. 95 (16), 164503.Google Scholar
Anilkumar, A. V., Lee, C. P. & Wang, T. G. 1991 Surface-tension-induced mixing following coalescence of initially stationary drops. Phys. Fluids A 3 (11), 25872591.CrossRefGoogle Scholar
Aryafar, H. & Kavehpour, H. P. 2006 Drop coalescence through planar surfaces. Phys. Fluids 18 (7), 072105.CrossRefGoogle Scholar
Aryafar, H. & Kavehpour, H. P. 2009 Electrocoalescence: effects of DC electric fields on coalescence of drops at planar interfaces. Langmuir 25 (21), 1246012465.Google Scholar
Baldessari, F. & Leal, L. G. 2006 Effect of overall drop deformation on flow-induced coalescence at low capillary numbers. Phys. Fluids 18, 013602.Google Scholar
Bhakta, A. & Ruckenstein, E. 1997 Decay of standing foams: drainage, coalescence and collapse. Adv. Colloid Interface Sci. 70, 1124.CrossRefGoogle Scholar
Blanchette, F. & Bigioni, T. P. 2006 Partial coalescence of drops at liquid interfaces. Nat. Phys. 2 (4), 254257.Google Scholar
Blanchette, F. & Bigioni, T. P. 2009 Dynamics of drop coalescence at fluid interfaces. J. Fluid Mech. 620, 333352.Google Scholar
Blanchette, F., Messio, L. & Bush, J. W. M. 2009 The influence of surface tension gradients on drop coalescence. Phys. Fluids 21 (7), 072107.Google Scholar
Burton, J. C., Huisman, F. M., Alison, P., Rogerson, D. & Taborek, P. 2010 Experimental and numerical investigation of the equilibrium geometry of liquid lenses. Langmuir 26 (19), 1531615324.CrossRefGoogle ScholarPubMed
Burton, J. C., Rutledge, J. E. & Taborek, P. 2004 Fluid pinch-off dynamics at nanometer length scales. Phys. Rev. Lett. 92 (24), 244505.Google Scholar
Burton, J. C. & Taborek, P. 2008 Bifurcation from bubble to droplet behavior in inviscid pinch-off. Phys. Rev. Lett. 101 (21), 214502.Google Scholar
Burton, J. C., Waldrep, R. & Taborek, P. 2005 Scaling and instabilities in bubble pinch-off. Phys. Rev. Lett. 94 (18), 184502.CrossRefGoogle ScholarPubMed
Case, S. C. & Nagel, S. R. 2008 Coalescence in low-viscosity liquids. Phys. Rev. Lett. 100 (8), 084503.Google Scholar
Charles, G. E. & Mason, S. G. 1960a The coalescence of liquid drops with flat liquid/liquid interfaces. J. Colloid Sci. 15 (3), 236267.Google Scholar
Charles, G. E. & Mason, S. G. 1960b The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces. J. Colloid Sci. 15 (2), 105122.Google Scholar
Chen, X., Mandre, S. & Feng, J. J. 2006 Partial coalescence between a drop and a liquid–liquid interface. Phys. Fluids 18 (5), 051705.Google Scholar
Dai, B. & Leal, L. G. 2008 The mechanism of surfactant effects on drop coalescence. Phys. Fluids 20, 040802.Google Scholar
Ding, H., Li, E. Q., Zhang, F. H., Sui, Y., Spelt, P. D. M. & Thoroddsen, S. T. 2012 Propagation of capillary waves and ejection of small droplets in rapid droplet spreading. J. Fluid Mech. 697, 92114.Google Scholar
Duchemin, L., Eggers, J. & Josserand, C. 2003 Inviscid coalescence of drops. J. Fluid Mech. 487, 167178.Google Scholar
Duchemin, L., Popinet, S., Josserand, C. & Zaleski, S. 2002 Jet formation in bubbles bursting at a free surface. Phys. Fluids 14 (9), 30003008.CrossRefGoogle Scholar
Eggers, J., Lister, J. R. & Stone, H. A. 1999 Coalescence of liquid drops. J. Fluid Mech. 401, 293310.CrossRefGoogle Scholar
Friend, J. & Yeo, L. Y. 2011 Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83 (2), 647704.CrossRefGoogle Scholar
Gilet, T., Mulleners, K., Lecomte, J., Vandewalle, N. & Dorbolo, S. 2007a Critical parameters for the partial coalescence of a droplet. Phys. Rev. E 75 (3), 036303.CrossRefGoogle ScholarPubMed
Gilet, T., Vandewalle, N. & Dorbolo, S. 2007b Controlling the partial coalescence of a droplet on a vertically vibrated bath. Phys. Rev. E 76 (3), 035302.Google Scholar
Gonnermann, H. M. & Manga, M. 2007 The fluid mechanics inside a volcano. Annu. Rev. Fluid Mech. 39, 321356.Google Scholar
Hamlin, B. S., Creasey, J. C. & Ristenpart, W. D. 2012 Electrically tunable partial coalescence of oppositely charged drops. Phys. Rev. Lett. 109 (9), 094501.Google Scholar
Honey, E. M. & Kavehpour, H. P. 2006 Astonishing life of a coalescing drop on a free surface. Phys. Rev. E 73 (2), 027301.Google Scholar
Hopper, R. W. 1993 Coalescence of two viscous cylinders by capillarity. Part I: theory. J. Am. Ceram. Soc. 76 (12), 29472952.Google Scholar
Kavehpour, H. P. 2015 Coalescence of drops. Annu. Rev. Fluid Mech. 47, 245268.Google Scholar
Keller, J. B., Milewski, P. A. & Vanden-Broeck, J.-M. 2000 Merging and wetting driven by surface tension. Eur. J. Mech. (B/Fluids) 19 (4), 491502.Google Scholar
Lamb, H. 1975 Hydrodynamics, 6th edn. Dover.Google Scholar
Li, C., Wang, Z., Wang, P.-I., Peles, Y., Koratkar, N. & Peterson, G. P. 2008 Nanostructured copper interfaces for enhanced boiling. Small 4 (8), 10841088.Google Scholar
Li, E. Q., Al-Otaibi, S. A., Vakarelski, I. U. & Thoroddsen, S. T. 2014 Satellite formation during bubble transition through an interface between immiscible liquids. J. Fluid Mech. 744, R1.Google Scholar
Liao, Y. & Lucas, D. 2010 A literature review on mechanisms and models for the coalescence process of fluid particles. Chem. Engng Sci. 65, 28512864.CrossRefGoogle Scholar
Martin, D. W. & Blanchette, F. 2015 Simulations of surfactant effects on the dynamics of coalescing drops and bubbles. Phys. Fluids 27 (1), 012103.CrossRefGoogle Scholar
deMello, A. J. 2006 Control and detection of chemical reactions in microfluidic systems. Nature 442 (7101), 394402.Google Scholar
Menchaca-Rocha, A., Martínez-Dávalos, A., Núñez, R., Popinet, S. & Zaleski, S. 2001 Coalescence of liquid drops by surface tension. Phys. Rev. E 63 (4), 046309.Google Scholar
Nakayama, H., Klug, D. D., Ratcliffe, C. I. & Ripmeester, J. A. 2003 Ordering and clathrate hydrate formation in co-deposits of xenon and water at low temperatures. Chem. Eur. J. 9 (13), 29692973.CrossRefGoogle Scholar
Oguz, H. N. & Prosperetti, A. 1989 Surface-tension effects in the contact of liquid surfaces. J. Fluid Mech. 203, 149171.CrossRefGoogle Scholar
Ohnishi, M., Azuma, H. & Straub, J. 1999 Study on secondary bubble creation induced by bubble coalescence. Adv. Space Res. 24 (10), 13311336.CrossRefGoogle Scholar
Paulsen, J. D., Burton, J. C., Nagel, S. R., Appathurai, S., Harris, M. T. & Basaran, O. A. 2012 The inexorable resistance of inertia determines the initial regime of drop coalescence. Proc. Natl Acad. Sci. USA 109 (18), 68576861.Google Scholar
Paulsen, J. D., Carmigniani, R., Kannan, A., Burton, J. C. & Nagel, S. R. 2014 Coalescence of bubbles and drops in an outer fluid. Nat. Commun. 5, 3182.Google Scholar
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190 (2), 572600.Google Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.Google Scholar
Pucci, G., Harris, D. M. & Bush, J. W. M. 2015 Partial coalescence of soap bubbles. Phys. Fluids 27 (6), 061704.CrossRefGoogle Scholar
Ray, B., Biswas, G. & Sharma, A. 2010 Generation of secondary droplets in coalescence of a drop at a liquid–liquid interface. J. Fluid Mech. 655, 72104.Google Scholar
Renardy, Y., Popinet, S., Duchemin, L., Renardy, M., Zaleski, S., Josserand, C., Drumright-Clarke, M. A., Richard, D., Clanet, C. & Quéré, D. 2003 Pyramidal and toroidal water drops after impact on a solid surface. J. Fluid Mech. 484, 6983.Google Scholar
Rioboo, R., Adão, M. H., Voué, M. & De Coninck, J. 2006 Experimental evidence of liquid drop break-up in complete wetting experiments. J. Mater. Sci. 41 (16), 50685080.Google Scholar
Roux, D. C. D. & Cooper-White, J. J. 2004 Dynamics of water spreading on a glass surface. J. Colloid Interface Sci. 277 (2), 424436.Google Scholar
Sjöblom, J., Aske, N., Auflem, I. H., Brandal, Ø. Y., Havre, T. E., Saether, Ø. Y., Westvik, A., Johnsen, E. E. & Kallevik, H. 2003 Our current understanding of water-in-crude oil emulsions. Recent characterization techniques and high pressure performance. Adv. Colloid Interface Sci. 100–102, 399473.Google Scholar
Thoroddsen, S. T. 2006 Fluid dynamics: droplet genealogy. Nat. Phys. 2 (4), 223224.CrossRefGoogle Scholar
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2008 High-speed imaging of drops and bubbles. Annu. Rev. Fluid Mech. 40, 257285.Google Scholar
Thoroddsen, S. T., Etoh, T. G., Takehara, K. & Ootsuka, N. 2005a On the coalescence speed of bubbles. Phys. Fluids 17 (7), 071703.Google Scholar
Thoroddsen, S. T., Qian, B., Etoh, T. G. & Takehara, K. 2007 The initial coalescence of miscible drops. Phys. Fluids 19 (7), 072110.Google Scholar
Thoroddsen, S. T. & Takehara, K. 2000 The coalescence cascade of a drop. Phys. Fluids 12 (6), 12651267.Google Scholar
Thoroddsen, S. T., Takehara, K. & Etoh, T. G. 2005b The coalescence speed of a pendent and a sessile drop. J. Fluid Mech. 527, 85114.Google Scholar
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.Google Scholar
Villermaux, E. & Bossa, B. 2009 Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5 (9), 697702.Google Scholar
Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C. & McGillis, W. R. 2009 advances in quantifying air–sea gas exchange and environmental forcing. Annu. Rev. Mater. Sci. 1, 213244.Google Scholar
Williams, A. 1973 Combustion of droplets of liquid fuels: a review. Combust. Flame 21 (1), 131.Google Scholar
Wu, M., Cubaud, T. & Ho, C.-M. 2004 Scaling law in liquid drop coalescence driven by surface tension. Phys. Fluids 16 (7), L51L54.Google Scholar
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing …. Annu. Rev. Fluid Mech. 38, 159192.Google Scholar
Yue, P., Zhou, C. & Feng, J. J. 2006 A computational study of the coalescence between a drop and an interface in Newtonian and viscoelastic fluids. Phys. Fluids 18 (10), 102102.Google Scholar
Zhang, F. H., Li, E. Q. & Thoroddsen, S. T. 2009 Satellite formation during coalescence of unequal size drops. Phys. Rev. Lett. 102 (10), 104502.Google Scholar
Zhang, F. H. & Thoroddsen, S. T. 2008 Satellite generation during bubble coalescence. Phys. Fluids 20 (2), 022104.Google Scholar
Zhang, L. V., Toole, J., Fezzaa, K. & Deegan, R. D. 2012 Evolution of the ejecta sheet from the impact of a drop with a deep pool. J. Fluid Mech. 690, 515.Google Scholar

Zhang et al. supplementary movie

High-speed video of partial coalescence inside the pressure chamber for density ratio of 0.03. Corresponding to Figure 3(a). Video frame rate is about 125 kfps.

Download Zhang et al. supplementary movie(Video)
Video 42.2 KB

Zhang et al. supplementary movie

High-speed video of partial coalescence inside the pressure chamber for density ratio of 0.13. Corresponding to Figure 3(b). Video frame rate is about 125 kfps.

Download Zhang et al. supplementary movie(Video)
Video 19.6 KB

Zhang et al. supplementary movie

High-speed video of partial coalescence inside the pressure chamber for density ratio of 0.35. Corresponding to Figure 3(c). Video frame rate is about 64 kfps.

Download Zhang et al. supplementary movie(Video)
Video 23.9 KB

Zhang et al. supplementary movie

High-speed video of partial coalescence inside the pressure chamber for density ratio of 0.71. Corresponding to Figure 3(d). Video frame rate is about 81 kfps.

Download Zhang et al. supplementary movie(Video)
Video 60.7 KB

Zhang et al. supplementary movie

Numerical simulation of partial coalescence, comparing the dynamics for different density ratios, of 0.03, 0.13, 0.35 and 0.71. Corresponds to Figure 3.

Download Zhang et al. supplementary movie(Video)
Video 6 MB

Zhang et al. supplementary movie

Numerical simulation of partial coalescence and resulting vorticity structures inside the father bubble, comparing the dynamics for different density ratios, of 0.03, 0.13, 0.35 and 0.71. Same conditions as in Figure 3.

Download Zhang et al. supplementary movie(Video)
Video 15.8 MB

Zhang et al. supplementary movie

Numerical simulation of partial coalescence for a range of density ratios, $D=\rho_i/\rho_o =$~0.001 (black), 0.015 (green), 0.050 (red), 0.100 (blue), 0.300 (magenta), and 1.000 (cyan). , Corresponds to Figure 5(a).

Download Zhang et al. supplementary movie(Video)
Video 16.9 MB

Zhang et al. supplementary movie

Formation of multiple satellites. Corresponding to Figure 15(a). Frame rate is about 66 kfps.

Download Zhang et al. supplementary movie(Video)
Video 826.5 KB

Zhang et al. supplementary movie

Formation of multiple satellites, from focusing of subsequent capillary waves. Corresponding to Figure 17(a). Frame rate is about 129 kfps.

Download Zhang et al. supplementary movie(Video)
Video 328.3 KB