Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T00:44:38.291Z Has data issue: false hasContentIssue false

Optimal vortex formation in a self-propelled vehicle

Published online by Cambridge University Press:  15 November 2013

Robert W. Whittlesey
Affiliation:
Graduate Aeronautical Laboratories, California Institute of Technology Pasadena, CA 91125, USA
John O. Dabiri*
Affiliation:
Graduate Aeronautical Laboratories, California Institute of Technology Pasadena, CA 91125, USA Bioengineering, California Institute of Technology Pasadena, CA 91125, USA
*
Email address for correspondence: jodabiri@caltech.edu

Abstract

Previous studies have shown that the formation of coherent vortex rings in the near-wake of a self-propelled vehicle can increase propulsive efficiency compared with a steady jet wake. The present study utilizes a self-propelled vehicle to explore the dependence of propulsive efficiency on the vortex ring characteristics. The maximum propulsive efficiency was observed to occur when vortex rings were formed of the largest physical size, just before the leading vortex ring would pinch off from its trailing jet. These experiments demonstrate the importance of vortex ring pinch off in self-propelled vehicles, where coflow modifies the vortex dynamics.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartol, I. K., Krueger, P. S., Thompson, J. T. & Stewart, W. J. 2008 Swimming dynamics and propulsive efficiency of squids through ontogeny. Integr. Compar. Biol. 48 (6), 720733.CrossRefGoogle ScholarPubMed
Beckwith, T. G., Marangoni, R. D. & Lienhard, J. H. 2007 Mechanical Measurements. Pearson Prentice Hall.Google Scholar
Bertram, C. D. 2003 Experimental studies of collapsible tubes. In Flow Past Highly Compliant Boundaries and in Collapsible Tubes, Fluid Mechanics and Its Applications, Vol. 72, pp. 5165. Springer.Google Scholar
Bertram, C. D. & Nugent, A. H. 2005 The flow field downstream of an oscillating collapsed tube. Trans. ASME: J. Biomech. Engng 127, 3945.Google ScholarPubMed
Bertram, C. D., Truong, N. K. & Hall, S. D. 2008 Piv measurement of the flow field just downstream of an oscillating collapsible tube. Trans. ASME: J. Biomech. Engng 130, 061011.Google ScholarPubMed
Bertram, C. D. & Tscherry, J. 2006 The onset of flow-rate limitation and flow-induced oscillations in collapsible tubes. J. Fluids Struct. 22, 10291045.Google Scholar
Choutapalli, I. M. 2007 An experimental study of a pulsed jet ejector. PhD thesis, Florida State University.CrossRefGoogle Scholar
Conrad, W. A. 1969 Pressure-flow relationships in collapsible tubes. IEEE Trans. Biomed. Engng BME-16 (4), 284295.Google Scholar
Dabiri, J. O. & Gharib, M. 2004 Fluid entrainment by isolated vortex rings. J. Fluid Mech. 511, 311331.Google Scholar
Dion, B., Naili, S., Renaudeaux, J. P. & Ribeau, C. 1995 Buckling of elastic tubes: study of highly compliant device. Med. Biol. Engng Comput. 33, 196201.CrossRefGoogle ScholarPubMed
Finley, T. J. & Mohseni, K. 2004 Micro pulsatile jets for thrust optimization. In Proceedings of IMECE2004, 2004 ASME International Mechanical Engineering Congress and Exposition.Google Scholar
Fung, Y. C. 1997 Biomechanics: Circulation. Springer.Google Scholar
Gadre, A. S., Maczka, D. K., Spinello, D., McCarter, B. R., Stilwell, D. J., Neu, W., Roan, M. J. & Hennage, J. B. 2008 Cooperative localization of an acoustic source using towed hydrophone arrays. In Autonomous Underwater Vehicles, 2008 (AUV 2008), pp. 18. IEEE/OES.Google Scholar
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.Google Scholar
Green, G. 1835 Researches on the vibration of pendulums in fluid media. Trans. R. Soc. Edinburgh 13 (1), 5462.Google Scholar
Heil, M. 1996 The stability of cylindrical shells conveying viscous flow. J. Fluids Struct. 10, 173196.Google Scholar
Heil, M. & Jensen, O. E. 2003 Flows in deformable tubes and channels: theoretical models and biological applications. In Flow Past Highly Compliant Boundaries and in Collapsible Tubes, Fluid Mechanics and Its Applications, Vol. 72, pp. 1549. Springer.CrossRefGoogle Scholar
Ho, C.-M. & Gutmark, E. 1987 Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet. J. Fluid Mech. 179, 383405.CrossRefGoogle Scholar
Kececioglu, I., Mcclurken, M. E., Kamm, R. D. & Shapiro, A. H. 1981 Steady, supercritical flow in collapsible tubes. Part 1. Experimental observations. J. Fluid Mech. 109, 367389.Google Scholar
Krieg, M. & Mohseni, K. 2008 Thrust characterization of a bioinspired vortex ring thruster for locomotion of underwater robots. IEEE J. Ocean. Engng 33 (2), 123132.Google Scholar
Krieg, M. & Mohseni, K. 2010 Dynamic modelling and control of biologically inspired vortex ring thrusters for underwater robot locomotion. IEEE Trans. Robot. 26 (3), 542554.CrossRefGoogle Scholar
Krieg, M. & Mohseni, K. 2013 Modelling circulation, impulse and kinetic energy of starting jets with non-zero radial velocity. J. Fluid Mech. 719, 488526.CrossRefGoogle Scholar
Krueger, P. S. 2001 The significance of vortex ring formation and nozzle exit over-pressure to pulsatile jet propulsion. PhD thesis, California Institute of Technology.Google Scholar
Krueger, P. S., Dabiri, J. O. & Gharib, M. 2003 Vortex ring pinchoff in the presence of simultaneously initiated uniform background co-flow. Phys. Fluids 15 (7), L49L52.Google Scholar
Krueger, P. S., Dabiri, J. O. & Gharib, M. 2006 The formation number of vortex rings formed in uniform background co-flow. J. Fluid Mech. 556, 147166.Google Scholar
Krueger, P. S. & Gharib, M. 2003 The significance of vortex ring formation to the impulse and thrust of a starting jet. Phys. Fluids 15 (5), 1271.CrossRefGoogle Scholar
Krueger, P. S. & Gharib, M. 2005 Thrust augmentation and vortex ring evolution in a fully-pulsed jet. AIAA J. 43 (4), 792801.Google Scholar
Liepmann, D. & Gharib, M. 1992 The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech. 245, 643668.Google Scholar
Love, A. E. H. 1944 A Treatise on the Mathematical Theory of Elasticity. Dover.Google Scholar
Maxworthy, T. 1972 The structure and stability of vortex rings. J. Fluid Mech. 51, 1532.CrossRefGoogle Scholar
Moslemi, A. A. 2010 Propulsive efficiency of a biomorphic pulsed-jet underwater vehicle. PhD thesis, Southern Methodist University.Google Scholar
Moslemi, A. A. & Krueger, P. S. 2010 Propulsive efficiency of a biomorphic pulsed-jet underwater vehicle. Bioinspir. Biomim. 5 (3), 036003.Google Scholar
Moslemi, A. A. & Krueger, P. S. 2011 The effect of Reynolds number on the propulsive efficiency of a biomorphic pulsed-jet underwater vehicle. Bioinspir. Biomim. 6 (2), 026001.Google Scholar
Müller, M. O., Bernal, L. P., Moran, R. P., Washabaugh, P. D., Parviz, B. A., Chou, T.-K. A., Zhang, C. & Najafi, K. 2000a Thrust performance of micromachined synthetic jets. In AIAA Fluids 2000 Conference.Google Scholar
Nichols, J. T. & Krueger, P. S. 2012 Effect of vehicle configuration on the performance of a submersible pulsed-jet vehicle at intermediate Reynolds number. Bioinspir. Biomim. 7 (3), 036010.Google Scholar
Olcay, A. B. & Krueger, P. S. 2008 Measurement of ambient fluid entrainment during laminar vortex ring formation. Exp. Fluids 44, 235247.Google Scholar
Palermo, T. & Flaud, P. 1987 Etude de l’effondrement à deux et trois lobes de tubes élastiques. J. Biophys. Bioméch. 11, 105111.Google Scholar
Petrich, J. 2009 Improved guidance, navigation, and control for autonomous underwater vehicles: theory and experiment. PhD thesis, Virginia Polytechnic Institute and State University.Google Scholar
Petrich, J., Neu, W. L. & Stilwell, D. J. 2007 Identification of a simplified auv pitch axis model for control design: theory and experiments. In OCEANS 2007, pp. 17.Google Scholar
Petrich, J. & Stilwell, D. J. 2010 Model simplification for auv pitch-axis control design. Ocean Engng 37 (7), 638651.Google Scholar
Prandtl, L. 1952 Essentials of Fluid Dynamics: With Applications to Hydraulics, Aeronautics, Meteorology and other Subjects. Hafner.Google Scholar
Reynolds, W. C., Parekh, D. E., Juvet, P. J. D. & Lee, M. J. D. 2003 Bifurcating and blooming jets. Annu. Rev. Fluid Mech. 35, 295315.CrossRefGoogle Scholar
Ruiz, L. A., Whittlesey, R. W. & Dabiri, J. O. 2011 Vortex-enhanced propulsion. J. Fluid Mech. 668, 532.CrossRefGoogle Scholar
Shadden, S. C., Dabiri, J. O. & Marsden, J. E. 2006 Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys. Fluids 18, 047105.Google Scholar
Shariff, K. & Leonard, A. 1992 Vortex rings. Annu. Rev. Fluid Mech. 24, 235279.CrossRefGoogle Scholar
Siekmann, J. 1962 On a pulsating jet from the end of a tube, with application to the propulsion of certain aquatic animals. J. Fluid Mech. 15 (03), 399418.Google Scholar
Truong, N. K. & Bertram, C. D. 2009 The flow field downstream of a collapsible tube during oscillation onset. Commun. Numer. Meth. Engng 25, 405428.Google Scholar
Weihs, D. 1977 Periodic jet propulsion of aquatic creatures. Forsch. Zool. 24, 171175.Google Scholar