Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T04:20:42.489Z Has data issue: false hasContentIssue false

Optimal growth of counter-rotating vortex pairs interacting with walls

Published online by Cambridge University Press:  06 October 2020

Daniel Dehtyriov*
Affiliation:
Department of Engineering Science, University of Oxford, Parks Road, OxfordOX1 3PJ, UK Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria3800, Australia
Kerry Hourigan
Affiliation:
Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria3800, Australia
Mark C. Thompson
Affiliation:
Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria3800, Australia
*
Email address for correspondence: daniel.dehtyriov@eng.ox.ac.uk

Abstract

The transient growth of a counter-rotating equal strength vortex pair, which descends under mutual induction towards a ground plane, is examined through non-modal linear stability analysis and direct numerical simulation. The vortex pair is studied at a height of five vortex spacing distances above the wall, consistent with the first mode of vortex instability/wall interaction observed by experiment. Three regimes are identified in which the optimal mode topology and non-modal growth mechanisms are distinct, correlated with the widely studied Crow and elliptic instabilities, alongside a wall-modified long-wavelength-displacement-type instability. The initial optimal amplification mechanisms are found to be weakly influenced by the wall, with the long- and short-wave mechanisms consisting of anti-symmetric amplification at the leading hyperbolic point and symmetric amplification at the trailing hyperbolic point, respectively, as observed by out-of-wall studies previously. The linear growth of the Crow instability is found to be impeded by the wall, and the evolution results in the suppression of both the secondary structure formation and vortex rebound. The linear elliptic mode remains largely uninhibited however, and substantially outgrows the long-wave modes, illustrating the importance of the elliptic instability on the wall-bounded interaction. Both the wall-modified long-wave and elliptic optimal growth modes show substantial amplification in the secondary vortices. At finite perturbation amplitudes, the nonlinear formation of both long- and short-wavelength secondary vortex tongues are shown to play a critical role in the vortex dynamics as the pair strongly interacts with the wall.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdessemed, N., Sharma, A. S., Sherwin, S. J. & Theofills, V. 2009 Transient growth analysis of the flow past a circular cylinder. Phys. Fluids 21 (4), 044103.CrossRefGoogle Scholar
Anderson, B. H. & Gibb, J. 2008 Vortex-generator installation studies on steady-state and dynamic distortion. J. Aircraft 35 (4), 513520.CrossRefGoogle Scholar
Antkowiak, A. & Brancher, P. 2004 Transient energy growth for the Lamb–Oseen vortex. Phys. Fluids 16 (1), L1L4.CrossRefGoogle Scholar
Antkowiak, A. & Brancher, P. 2007 On vortex rings around vortices: an optimal mechanism. J. Fluid Mech. 578, 295304.CrossRefGoogle Scholar
Ash, R. L. & Khorrami, M. R. 1995 Vortex Stability, pp. 317372. Springer.Google Scholar
Asselin, D. J. & Williamson, C. H. K. 2017 Influence of a wall on the three-dimensional dynamics of a vortex pair. J. Fluid Mech. 817, 339373.CrossRefGoogle Scholar
Bae, J., Breuer, K. S. & Tan, C. S. 2005 Active control of tip clearance flow in axial compressors. Trans. ASME: J. Turbomach. 127 (2), 352362.Google Scholar
Barkley, D., Blackburn, H. M. & Sherwin, S. J. 2008 Direct optimal growth analysis for timesteppers. Intl J. Numer. Meth. Fluids 57 (9), 14351458.CrossRefGoogle Scholar
Batchelor, G. K. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20 (4), 645658.CrossRefGoogle Scholar
Blackburn, H. M., Barkley, D. & Sherwin, S. J. 2008 Convective instability and transient growth in flow over a backward-facing step. J. Fluid Mech. 603, 271304.CrossRefGoogle Scholar
Bliss, D. B. 1970 The dynamics of curved rotational vortex lines. Master's thesis, Massachusetts Institute of Technology.Google Scholar
Brion, V., Sipp, D. & Jacquin, L. 2007 Optimal amplification of the Crow instability. Phys. Fluids 19 (11), 111703.CrossRefGoogle Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4 (8), 16371650.CrossRefGoogle Scholar
Cheng, M., Lou, J. & Luo, L. S. 2010 Numerical study of a vortex ring impacting a flat wall. J. Fluid Mech. 660, 430455.CrossRefGoogle Scholar
Crouch, J. D. 1997 Instability and transient growth for two trailing-vortex pairs. J. Fluid Mech. 350, 311330.CrossRefGoogle Scholar
Crouch, J. 2005 Airplane trailing vortices and their control. C.R. Phys. 6 (4–5 SPEC. ISS.), 487499.CrossRefGoogle Scholar
Crow, S. C. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8 (12), 21722179.CrossRefGoogle Scholar
Crow, S. C. & Bate, E. R. 1976 Lifespan of trailing vortices in a turbulent atmosphere. J. Aircraft 13 (7), 476482.CrossRefGoogle Scholar
Dehtyriov, D., Hourigan, K. & Thompson, M. C. 2019 Direct numerical simulation of a counter-rotating vortex pair interacting with a wall. J. Fluid Mech. 884, A36.CrossRefGoogle Scholar
Delbende, I. & Rossi, M. 2005 Nonlinear evolution of a swirling jet instability. Phys. Fluids 17 (4), 044103.CrossRefGoogle Scholar
Doligalski, T. 1994 Vortex interactions with walls. Annu. Rev. Fluid Mech. 26 (1), 573616.CrossRefGoogle Scholar
Donnadieu, C., Ortiz, S., Chomaz, J. M. & Billant, P. 2009 Three-dimensional instabilities and transient growth of a counter-rotating vortex pair. Phys. Fluids 21 (9), 094102.CrossRefGoogle Scholar
Fabre, D. & Jacquin, L. 2000 Stability of a four-vortex aircraft wake model. Phys. Fluids 12 (10), 24382443.CrossRefGoogle Scholar
Fabre, D. & Jacquin, L. 2004 Viscous instabilities in trailing vortices at large swirl numbers. J. Fluid Mech. 500, 239262.CrossRefGoogle Scholar
Fabre, D., Jacquin, L. & Loof, A. 2002 Optimal perturbations in a four-vortex aircraft wake in counter-rotating configuration. J. Fluid Mech. 451, 319328.CrossRefGoogle Scholar
Fabre, D., Sipp, D. & Jacquin, L. 2006 Kelvin waves and the singular modes of the Lamb–Oseen vortex. J. Fluid Mech. 551, 235274.CrossRefGoogle Scholar
Gerz, T., Holzäpfel, F. & Darracq, D. 2002 Commercial aircraft wake vortices. Prog. Aerosp. Sci. 38 (3), 181208.CrossRefGoogle Scholar
Greenblatt, D. 2012 Fluidic control of a wing tip vortex. AIAA J. 50 (2), 375386.CrossRefGoogle Scholar
Griffith, M. D., Thompson, M. C., Leweke, T. & Hourigan, K. 2010 Convective instability in steady stenotic flow: optimal transient growth and experimental observation. J. Fluid Mech. 655, 504514.CrossRefGoogle Scholar
Harris, D. M. & Williamson, C. H. K. 2012 Instability of secondary vortices generated by a vortex pair in ground effect. J. Fluid Mech. 700, 148186.CrossRefGoogle Scholar
Harvey, J. K. & Perry, F. J. 1971 Flowfield produced by trailing vortices in the vicinity of the ground. AIAA J. 9 (8), 16591660.CrossRefGoogle Scholar
Hussain, A. K. M. F. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303356.CrossRefGoogle Scholar
Johnson, H. G., Brion, V. & Jacquin, L. 2016 Crow instability: nonlinear response to the linear optimal perturbation. J. Fluid Mech. 795, 652670.CrossRefGoogle Scholar
Karniadakis, G. E. & Sherwin, S. 2005 Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn.Oxford University Press.CrossRefGoogle Scholar
Karniadakis, G. E. & Triantafyllou, G. S. 1992 Three-dimensional dynamics and transition to turbulence in the wake of bluff objects. J. Fluid Mech. 238 (1), 130.CrossRefGoogle Scholar
Kelvin, L. W. T. 1880 On vortex atoms. Phil. Mag. 10, 155168.Google Scholar
Kerswell, R. R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34 (1), 83113.CrossRefGoogle Scholar
Kramer, W., Clercx, H. H. & van Heijst, G. F. 2007 Vorticity dynamics of a dipole colliding with a no-slip wall. Phys. Fluids 19 (12), 126603.CrossRefGoogle Scholar
Lacaze, L., Ryan, K. & Le Dizès, S. 2007 Elliptic instability in a strained Batchelor vortex. J. Fluid Mech. 577, 341361.CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics. Dover Publications.Google Scholar
Landman, M. J. & Saffman, P. G. 1987 The three-dimensional instability of strained vortices in a viscous fluid. Phys. Fluids 30 (8), 23392342.CrossRefGoogle Scholar
Laporte, F. & Corjon, A. 2000 Direct numerical simulations of the elliptic instability of a vortex pair. Phys. Fluids 12 (5), 10161031.CrossRefGoogle Scholar
Le Dizès, S. & Laporte, F. 2002 Theoretical predictions for the elliptical instability in a two-vortex flow. J. Fluid Mech. 471, 169201.CrossRefGoogle Scholar
Le Dizès, S. & Verga, A. 2002 Viscous interactions of two co-rotating vortices before merging. J. Fluid Mech. 467, 389410.CrossRefGoogle Scholar
Leweke, T., Le Dizès, S. & Williamson, C. H. K. 2016 Dynamics and instabilities of vortex pairs. Annu. Rev. Fluid Mech. 48 (1), 507541.CrossRefGoogle Scholar
Leweke, T. & Williamson, C. H. K. 1998 Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85119.CrossRefGoogle Scholar
Leweke, T. & Williamson, C. H. K. 2011 Experiments on long-wavelength instability and reconnection of a vortex pair. Phys. Fluids 23 (2), 225234.CrossRefGoogle Scholar
Lim, T. T. 1989 An experimental study of a vortex ring interacting with an inclined wall. Exp. Fluids 7 (7), 453463.CrossRefGoogle Scholar
Lim, T. T. & Nickels, T. B. 1992 Instability and reconnection in the head-on collision of two vortex rings. Nature 357 (6375), 225227.CrossRefGoogle Scholar
Luton, J. A. & Ragab, S. A. 1997 The three-dimensional interaction of a vortex pair with a wall. Phys. Fluids 9 (10), 29672980.CrossRefGoogle Scholar
Mao, X., Sherwin, S. J. & Blackburn, H. M. 2011 Transient growth and bypass transition in stenotic flow with a physiological waveform. Theor. Comput. Fluid Dyn. 25 (1–4), 3142.CrossRefGoogle Scholar
Mao, X., Sherwin, S. J. & Blackburn, H. M. 2012 Non-normal dynamics of time-evolving co-rotating vortex pairs. J. Fluid Mech. 701, 430459.CrossRefGoogle Scholar
Matthews, P. C., Hughes, D. W. & Proctor, M. R. E. 1995 Magnetic buoyancy, vorticity, and three-dimensional flux-tube formation. Astrophys. J. 448, 938.CrossRefGoogle Scholar
Misaka, T., Holzäpfel, F., Hennemann, I., Gerz, T., Manhart, M. & Schwertfirm, F. 2012 Vortex bursting and tracer transport of a counter-rotating vortex pair. Phys. Fluids 24 (2), 025104.CrossRefGoogle Scholar
Moore, D. W. & Saffman, P. G. 1975 The instability of a straight vortex filament in a strain field. Proc. R. Soc. Lond. A 346 (1646), 413425.Google Scholar
Orlandi, P. 1990 Vortex dipole rebound from a wall. Phys. Fluids A 2 (8), 14291436.CrossRefGoogle Scholar
Pradeep, D. S. & Hussain, F. 2006 Transient growth of perturbations in a vortex column. J. Fluid Mech. 550, 251288.CrossRefGoogle Scholar
Robinson, A. C. & Saffman, P. G. 1982 Three-dimensional stability of vortex arrays. J. Fluid Mech. 125, 411427.CrossRefGoogle Scholar
Roy, C., Schaeffer, N., Le Dizès, S. & Thompson, M. 2008 Stability of a pair of co-rotating vortices with axial flow. Phys. Fluids 20 (9), 094101.CrossRefGoogle Scholar
Scorer, R. S. & Davenport, L. J. 1970 Contrails and aircraft downwash. J. Fluid Mech. 43 (3), 451464.CrossRefGoogle Scholar
Sipp, D., Jacquin, L. & Cosssu, C. 2000 Self-adaptation and viscous selection in concentrated two-dimensional vortex dipoles. Phys. Fluids 12 (2), 245248.CrossRefGoogle Scholar
Sorensen, D. C. 1997 Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue calculation. In Parallel Numerical Algorithms (ed. Keyes, D. E., Sameh, A. & Venkatakrishnan, V.), pp. 119165. Springer.CrossRefGoogle Scholar
Spalart, P. R. 1998 Airplane trailing vortices. Annu. Rev. Fluid Mech. 30 (1), 107138.CrossRefGoogle Scholar
Stuart, T. A., Mao, X. & Gan, L. 2016 Transient growth associated with secondary vortices in ground/vortex interactions. AIAA J. 54 (6), 19011906.CrossRefGoogle Scholar
Thompson, M. C., Hourigan, K., Cheung, A. & Leweke, T. 2006 Hydrodynamics of a particle impact on a wall. Appl. Math. Model. 30 (11), 13561369.CrossRefGoogle Scholar
Thompson, M., Hourigan, K. & Sheridan, J. 1996 Three-dimensional instabilities in the wake of a circular cylinder. J. Expl Therm. Fluid Sci. 12 (2), 190196.CrossRefGoogle Scholar
Tsai, C.-Y. & Widnall, S. E. 1976 The stability of short waves on a straight vortex filament in a weak externally imposed strain field. J. Fluid Mech. 73 (4), 721733.CrossRefGoogle Scholar
Vernon, J. R. 1999 Lift-generated vortex wakes of subsonic transport aircraft. Prog. Aerosp. Sci. 35, 507660.Google Scholar
Wakim, A., Jacquin, L., Brion, V. & Dolfi-Bouteyre, A. 2017 Vortex pair in ground vicinity: optimal perturbation and optimal control. In 23ème Congrès Français de Mécanique, AFM, Association Française de Mécanique.Google Scholar
Widnall, S. E., Bliss, D. B. & Zalay, A. 1971 Theoretical and experimental study of the stability of a vortex pair. In Aircraft Wake Turbulence and Its Detection (ed. John, H. O., Arnold, G. & Milton, R.), pp. 305338. Springer.CrossRefGoogle Scholar
Williamson, C. H. K., Leweke, T., Asselin, D. J. & Harris, D. M. 2014 Phenomena, dynamics and instabilities of vortex pairs. Fluid Dyn. Res. 46 (6), 061425.CrossRefGoogle Scholar