Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T01:27:07.808Z Has data issue: false hasContentIssue false

Optimal eddy viscosity for resolvent-based models of coherent structures in turbulent jets

Published online by Cambridge University Press:  28 April 2021

Ethan Pickering*
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125, USA
Georgios Rigas
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125, USA
Oliver T. Schmidt
Affiliation:
Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA92093, USA
Denis Sipp
Affiliation:
DAAA, ONERA, Université Paris Saclay, 8 rue des Vertugadins, 92190Meudon, France
Tim Colonius
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125, USA
*
Email address for correspondence: pickering@caltech.edu

Abstract

Response modes computed via linear resolvent analysis of a turbulent mean-flow field have been shown to qualitatively capture characteristics of the observed turbulent coherent structures in both wall-bounded and free shear flows. To make such resolvent models predictive, the nonlinear forcing term must be closed. Strategies to do so include imposing self-consistent sets of triadic interactions, proposing various source models or through turbulence modelling. For the latter, several investigators have proposed using the mean-field eddy viscosity acting linearly on the fluctuation field. In this study, a data-driven approach is taken to quantitatively improve linear resolvent models by deducing an optimal eddy-viscosity field that maximizes the projection of the dominant resolvent mode to the energy-optimal coherent structure educed using spectral proper orthogonal decomposition (SPOD) of data from high-fidelity simulations. We use large-eddy simulation databases for round isothermal jets at subsonic, transonic and supersonic conditions and show that the optimal eddy viscosity substantially improves the agreement between resolvent and SPOD modes, reaching over 90 % agreement at those frequencies where the jet exhibits a low-rank response. We then consider a fixed model for the eddy viscosity and show that with the calibration of a single constant, the results are generally close to the optimal one. In particular, the use of a standard Reynolds-averaged Navier–Stokes eddy-viscosity resolvent model, with a single coefficient, provides substantial agreement between SPOD and resolvent modes for three turbulent jets and across the most energetic wavenumbers and frequencies.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bechara, W., Bailly, C., Lafon, P. & Candel, S.M. 1994 Stochastic approach to noise modeling for free turbulent flows. AIAA J. 32 (3), 455463.CrossRefGoogle Scholar
Brandt, L., Sipp, D., Pralits, J.O. & Marquet, O. 2011 Effect of base-flow variation in noise amplifiers: the flat-plate boundary layer. J. Fluid Mech. 687 (15), 503528.CrossRefGoogle Scholar
Brès, G.A., Ham, F.E., Nichols, J.W. & Lele, S.K. 2017 Unstructured large-eddy simulations of supersonic jets. AIAA J. 11641184.CrossRefGoogle Scholar
Brès, G.A., Jordan, P., Jaunet, V., Le Rallic, M., Cavalieri, A.V.G., Towne, A., Lele, S.K., Colonius, T. & Schmidt, O.T. 2018 Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets. J. Fluid Mech. 851, 83124.CrossRefGoogle Scholar
Butler, K.M. & Farrell, B.F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A: Fluid Dyn. 4 (8), 16371650.CrossRefGoogle Scholar
Cavalieri, A.V.G. & Agarwal, A. 2014 Coherence decay and its impact on sound radiation by wavepackets. J. Fluid Mech. 748, 399415.CrossRefGoogle Scholar
Cavalieri, A.V.G., Jordan, P., Agarwal, A. & Gervais, Y. 2011 Jittering wave-packet models for subsonic jet noise. J. Sound Vib. 330 (18-19), 44744492.CrossRefGoogle Scholar
Cavalieri, A.V.G., Rodríguez, D., Jordan, P., Colonius, T. & Gervais, Y. 2013 Wavepackets in the velocity field of turbulent jets. J. Fluid Mech. 730, 559592.CrossRefGoogle Scholar
Cess, R.D. 1958 A survey of the literature on heat transfer in turbulent tube flow. Tech. Rep. pp. 8–0529–R24.Google Scholar
Cho, M., Hwang, Y. & Choi, H. 2018 Scale interactions and spectral energy transfer in turbulent channel flow. J. Fluid Mech. 854, 474504.CrossRefGoogle Scholar
Chu, B.-T. 1965 On the energy transfer to small disturbances in fluid flow (part I). Acta Mech. 1 (3), 215234.CrossRefGoogle Scholar
Cossu, C., Pujals, G. & Depardon, S. 2009 Optimal transient growth and very large–scale structures in turbulent boundary layers. J. Fluid Mech. 619, 7994.CrossRefGoogle Scholar
Crighton, D.G. & Gaster, M. 1976 Stability of slowly diverging jet flow. J. Fluid Mech. 77 (2), 397413.CrossRefGoogle Scholar
Crouch, J.D., Garbaruk, A. & Magidov, D. 2007 Predicting the onset of flow unsteadiness based on global instability. J. Comput. Phys. 224 (2), 924940.CrossRefGoogle Scholar
Del Alamo, J.C. & Jimenez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.CrossRefGoogle Scholar
Duraisamy, K., Iaccarino, G. & Xiao, H. 2019 Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51, 357377.CrossRefGoogle Scholar
Farrell, B.F. & Ioannou, P.J. 1993 Optimal excitation of three-dimensional perturbations in viscous constant shear flow. Phys. Fluids A: Fluid Dyn. 5 (6), 13901400.CrossRefGoogle Scholar
Foures, D.P.G., Dovetta, N., Sipp, D. & Schmid, P.J. 2014 A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction. J. Fluid Mech. 759, 404431.CrossRefGoogle Scholar
Garnaud, X., Lesshafft, L., Schmid, P.J. & Huerre, P. 2013 The preferred mode of incompressible jets: linear frequency response analysis. J. Fluid Mech. 716, 189202.CrossRefGoogle Scholar
Georgiadis, N.J., Yoder, D.A. & Engblom, W.A. 2006 Evaluation of modified two-equation turbulence models for jet flow predictions. AIAA J. 44 (12), 31073114.CrossRefGoogle Scholar
Ghosal, S., Lund, T.S., Moin, P. & Akselvoll, K. 1995 A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286, 229255.CrossRefGoogle Scholar
de Giovanetti, M., Sung, H.J. & Hwang, Y. 2017 Streak instability in turbulent channel flow: the seeding mechanism of large-scale motions. J. Fluid Mech. 832, 483513.CrossRefGoogle Scholar
Hamilton, J.M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
Hansen, P.C. & O'Leary, D.P. 1993 The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14 (6), 14871503.CrossRefGoogle Scholar
Hultgren, L.S. & Gustavsson, L.H. 1981 Algebraic growth of disturbances in a laminar boundary layer. Phys. Fluids 24 (6), 10001004.CrossRefGoogle Scholar
Hwang, Y. 2016 Mesolayer of attached eddies in turbulent channel flow. Phys. Rev. Fluids 1 (6), 064401.CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2010 a Amplification of coherent streaks in the turbulent Couette flow: an input–output analysis at low Reynolds number. J. Fluid Mech. 643, 333348.CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2010 b Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. J. Fluid Mech. 664, 5173.CrossRefGoogle Scholar
Hwang, Y. & Eckhardt, B. 2020 Attached eddy model revisited using a minimal quasi-linear approximation. J. Fluid Mech. 894, A23.CrossRefGoogle Scholar
Illingworth, S.J., Monty, J.P. & Marusic, I. 2018 Estimating large-scale structures in wall turbulence using linear models. J. Fluid Mech. 842, 146162.CrossRefGoogle Scholar
Jaunet, V., Jordan, P. & Cavalieri, A.V.G. 2017 Two-point coherence of wave packets in turbulent jets. Phys. Rev. Fluids 2 (2), 024604.CrossRefGoogle Scholar
Jeun, J., Nichols, J.W. & Jovanović, M.R. 2016 Input-output analysis of high-speed axisymmetric isothermal jet noise. Phys. Fluids 28 (4), 047101.CrossRefGoogle Scholar
Jovanović, M.R. 2004 Modeling, Analysis, and Control of Spatially Distributed Systems. University of California at Santa Barbara, Department of Mechanical Engineering.Google Scholar
Jovanović, M.R. & Bamieh, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.CrossRefGoogle Scholar
Karban, U., Bugeat, B., Martini, E., Towne, A., Cavalieri, A.V.G., Lesshafft, L., Agarwal, A., Jordan, P. & Colonius, T. 2020 Ambiguity in mean-flow-based linear analysis. J. Fluid Mech. 900, R5.CrossRefGoogle Scholar
Launder, B.E. & Spalding, D.B. 1983 The numerical computation of turbulent flows. In Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, pp. 96–116. Elsevier.CrossRefGoogle Scholar
Lesshafft, L., Semeraro, O., Jaunet, V., Cavalieri, A.V.G. & Jordan, P. 2019 Resolvent-based modelling of coherent wavepackets in a turbulent jet. Phys. Rev. Fluids 4 (6), 063901.CrossRefGoogle Scholar
Lumley, J.L. 1967 The structure of inhomogeneous turbulent flows. Atmos. Turbul. Radio Propag. 166178.Google Scholar
Lumley, J.L. 1970 Stochastic tools in turbulence. J. Fluid Mech. 67, 413415.CrossRefGoogle Scholar
Malkus, W.V.R. 1956 Outline of a theory of turbulent shear flow. J. Fluid Mech. 1 (5), 521539.CrossRefGoogle Scholar
Martini, E., Cavalieri, A.V.G., Jordan, P., Towne, A. & Lesshafft, L. 2020 Resolvent-based optimal estimation of transitional and turbulent flows. J. Fluid Mech. 900, A2.CrossRefGoogle Scholar
Mattsson, K. & Nordström, J. 2004 Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199 (2), 503540.CrossRefGoogle Scholar
Maulik, R., San, O., Jacob, J. & Crick, C. 2019 Sub-grid scale model classification and blending through deep learning. J. Fluid Mech. 870, 784812.CrossRefGoogle Scholar
McKeon, B.J. & Sharma, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.CrossRefGoogle Scholar
Meliga, P., Pujals, G. & Serre, E. 2012 Sensitivity of 2-D turbulent flow past a D-shaped cylinder using global stability. Phys. Fluids 24 (6), 061701.CrossRefGoogle Scholar
Mettot, C., Sipp, D. & Bézard, H. 2014 Quasi-laminar stability and sensitivity analyses for turbulent flows: prediction of low-frequency unsteadiness and passive control. Phys. Fluids 26 (4), 061701.CrossRefGoogle Scholar
Michalke, A. 1971 Instability of a compressible circular free jet with consideration of the influence of the jet boundary layer thickness. Z. Flugwiss. 19 (8), 319328.Google Scholar
Moarref, R. & Jovanović, M.R. 2012 Model-based design of transverse wall oscillations for turbulent drag reduction. J. Fluid Mech. 707, 205240.CrossRefGoogle Scholar
Moarref, R., Sharma, A.S., Tropp, J.A. & McKeon, B.J. 2013 Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels. J. Fluid Mech. 734, 275316.CrossRefGoogle Scholar
Mohseni, K. & Colonius, T. 2000 Numerical treatment of polar coordinate singularities. J. Comput. Phys. 157 (2), 787795.CrossRefGoogle Scholar
Morra, P., Semeraro, O., Henningson, D.S. & Cossu, C. 2019 On the relevance of Reynolds stresses in resolvent analyses of turbulent wall-bounded flows. J. Fluid Mech. 867, 969984.CrossRefGoogle Scholar
Nogueira, P.A.S., Cavalieri, A.V.G., Jordan, P. & Jaunet, V. 2019 Large-scale, streaky structures in turbulent jets. J. Fluid Mech. 873, 211237.CrossRefGoogle Scholar
Oberleithner, K., Paschereit, C.O. & Wygnanski, I. 2014 On the impact of swirl on the growth of coherent structures. J. Fluid Mech. 741, 156199.CrossRefGoogle Scholar
Parish, E. & Duraisamy, K. 2016 A paradigm for data-driven predictive modeling using field inversion and machine learning. J. Comput. Phys. 305, 758774.CrossRefGoogle Scholar
Pickering, E., Rigas, G., Nogueira, P.A.S., Cavalieri, A.V.G., Schmidt, O.T. & Colonius, T. 2020 a Lift-up, Kelvin–Helmholtz and Orr mechanisms in turbulent jets. J. Fluid Mech. 896, A2.CrossRefGoogle Scholar
Pickering, E., Rigas, G., Sipp, D., Schmidt, O.T. & Colonius, T. 2019 Eddy viscosity for resolvent-based jet noise models. In 25th AIAA/CEAS Aeroacoustics Conference, p. 2454.Google Scholar
Pickering, E., Towne, A., Jordan, P. & Colonius, T. 2020 b Resolvent-based jet noise models: a projection approach. In AIAA Scitech 2020 Forum, p. 0999.Google Scholar
Pope, S.B. 1978 An explanation of the turbulent round-jet/plane-jet anomaly. AIAA J. 16 (3), 279281.CrossRefGoogle Scholar
Pujals, G., García-Villalba, M., Cossu, C. & Depardon, S. 2009 A note on optimal transient growth in turbulent channel flows. Phys. Fluids 21 (1), 015109.CrossRefGoogle Scholar
Reynolds, W.C. & Hussain, A.K.M.F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54 (2), 263288.CrossRefGoogle Scholar
Reynolds, W.C. & Tiederman, W.G. 1967 Stability of turbulent channel flow, with application to Malkus's theory. J. Fluid Mech. 27 (2), 253272.CrossRefGoogle Scholar
Rukes, L., Paschereit, C.O. & Oberleithner, K. 2016 An assessment of turbulence models for linear hydrodynamic stability analysis of strongly swirling jets. Eur. J. Mech. (B/Fluids) 59, 205218.CrossRefGoogle Scholar
Sarkar, S., Erlebacher, G., Hussaini, M.Y. & Kreiss, H.O. 1991 The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473493.CrossRefGoogle Scholar
Sartor, F., Mettot, C. & Sipp, D. 2014 Stability, receptivity, and sensitivity analyses of buffeting transonic flow over a profile. AIAA J. 53 (7), 19801993.CrossRefGoogle Scholar
Sasaki, K., Cavalieri, A.V.G., Jordan, P., Schmidt, O.T., Colonius, T. & Brès, G.A. 2017 High-frequency wavepackets in turbulent jets. J. Fluid Mech. 830, R2.CrossRefGoogle Scholar
Schmid, P.J., Henningson, D.S. & Jankowski, D.F. 2002 Stability and transition in shear flows. Appl. Mech. Rev. 55 (3), B57B59.CrossRefGoogle Scholar
Schmidt, O.T., Towne, A., Rigas, G., Colonius, T. & Brès, G.A. 2018 Spectral analysis of jet turbulence. J. Fluid Mech. 855, 953982.CrossRefGoogle Scholar
Semeraro, O., Jaunet, V., Jordan, P., Cavalieri, A.V. & Lesshafft, L. 2016 a Stochastic and harmonic optimal forcing in subsonic jets. In 22nd AIAA/CEAS Aeroacoustics Conference, p. 2935.Google Scholar
Semeraro, O., Lesshafft, L., Jaunet, V. & Jordan, P. 2016 b Modeling of coherent structures in a turbulent jet as global linear instability wavepackets: theory and experiment. Intl J. Heat Fluid Flow 62, 2432.CrossRefGoogle Scholar
Sharma, A.S. & McKeon, B.J. 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.CrossRefGoogle Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weath. Rev. 91 (3), 99164.2.3.CO;2>CrossRefGoogle Scholar
Tam, C.K.W. & Auriault, L. 1999 Jet mixing noise from fine-scale turbulence. AIAA J. 37 (2), 145153.CrossRefGoogle Scholar
Tammisola, O. & Juniper, M.P. 2016 Coherent structures in a swirl injector at $Re = 4800$ by nonlinear simulations and linear global modes. J. Fluid Mech. 792, 620657.CrossRefGoogle Scholar
Thies, A.T. & Tam, C.K.W. 1996 Computation of turbulent axisymmetric and nonaxisymmetric jet flows using the $k-\epsilon$ model. AIAA J. 34 (2), 309316.CrossRefGoogle Scholar
Towne, A., Bres, G.A. & Lele, S.K. 2017 A statistical jet-noise model based on the resolvent framework. In 23rd AIAA/CEAS Aeroacoustics Conference, p. 3706.Google Scholar
Towne, A., Lozano-Durán, A. & Yang, X. 2020 Resolvent-based estimation of space–time flow statistics. J. Fluid Mech. 883, A17.CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Trefethen, L.N., Trefethen, A.E., Reddy, S.C. & Driscoll, T.A. 1993 Hydrodynamic stability without eigenvalues. Science 261 (5121), 578584.CrossRefGoogle ScholarPubMed
Vadarevu, S.B., Symon, S., Illingworth, S.J. & Marusic, I. 2019 Coherent structures in the linearized impulse response of turbulent channel flow. J. Fluid Mech. 863, 11901203.CrossRefGoogle Scholar
Vreman, A.W. 2004 An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16 (10), 36703681.CrossRefGoogle Scholar
Wang, Z., Luo, K., Li, D., Tan, J. & Fan, J. 2018 Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation. Phys. Fluids 30, 125101.CrossRefGoogle Scholar
Yeh, C.-A. & Taira, K. 2019 Resolvent-analysis-based design of airfoil separation control. J. Fluid Mech. 867, 572610.CrossRefGoogle Scholar
Yim, E., Meliga, P. & Gallaire, F. 2019 Self-consistent triple decomposition of the turbulent flow over a backward-facing step under finite amplitude harmonic forcing. Proc. R. Soc. Lond. A 475 (2225), 20190018.Google Scholar
Zare, A., Jovanović, M.R. & Georgiou, T.T. 2017 Colour of turbulence. J. Fluid Mech. 812, 636680.CrossRefGoogle Scholar
Zhiyin, Y. 2015 Large-eddy simulation: past, present and the future. Chin. J. Aeronaut. 28 (1), 1124.CrossRefGoogle Scholar